untitled

(Barré) #1

  1. Express into recurring decimal fractions : (a)
    6


1
(b)
11

7
(c)
9

2
3 (d)
15

8
3


  1. Express into simple fractions :


(a) 0 ˜ 2  (b) 0 ˜ 3  5  (c) 0 ˜ 13  (d) 3 ˜ 78  (e) 6 ˜ 23  09 



  1. Express into similar recurring fractions :


(a) 2 ˜ 3 , 5 ˜ 23  5  (b) 7 ˜ 2  6 , 4 ˜ 237 


(c) 5 ˜ 7 , 8 ˜ 3  4 , 6 ˜ 245  (d) 12 ˜ 32 , 2 ˜ 19 , 4 ˜ 325  6 



  1. Add : (a) 0 ˜ 45  0 ˜ 134  (b) 2 ˜ 05  8 ˜ 04  7 ˜ 018 (c) 0 ˜ 00  6  0 ˜ 9  2  0 ˜ 01  34 

  2. Subtract :


(a) 3 ˜ 4  2 ˜ 1  3 (b) 5 ˜ 1  2  3 ˜ 45 


(c) 8 ˜ 49  5 ˜ 35  6  (d) 19 ˜ 345  13 ˜ 23  49 



  1. Multiply:


(a) 0 ˜ 3 u 0 ˜ 6  (b) 2 ˜ 4 u 0 ˜ 8  1  (c) 0 ˜ 62 u 0 ˜ 3  (d) 42 ˜ 1  8 u 0 ˜ 28 



  1. Divide :


(a) 0 ˜ 3 y 0 ˜ 6  (b) 0 ˜ 3  5 y 1 ˜ 7  (c) 2 ˜ 37 y 0 ˜ 45  (d) 1 ˜ 1  85 y 0 ˜ 2  4 



  1. Find the root (upto three decimal places) and write down the approximate values of
    the square roots upto two decimal places :


(a) 12 (b) 0 ˜ 2  5  (c) 1 ˜ 34  (d) 5 ˜ 13  02 



  1. Find the rational and irrational numbers from the following numbers :


(a) 0 ˜ 4  (b) 9 (c) 11 (d)
3


6
(e)
7

8
(f)
48

27
(g)

7

3

3

2
(h) 5 ˜ 6  39 


  1. Simplify :


(a) ( 0 ˜ 3 u 0 ˜ 83 )y 0 ˜ 5 u 0 ˜ 1  + 0 ˜ 35 y 0 ˜ 08 

(b) >@ 6 ˜ 27 u 0 ˜ 5 y^` 0 ˜ 5 u 0 ˜ 75 u 8 ˜ 36


y^` 0 ˜ 25 u 0 ˜ 1 u 0 ˜ 75 u 21 ˜ 3  u 0 ˜ 5



  1. 5 and 4 are two real numbers.
    (a) Which one is rational and which one is irrational.


(b) Find the two irrational numbers between 5 and 4.


(c) Prove That, 5 is an irrational number.

Free download pdf