- If a^4 a^2 b^2 b^4 8 and a^2 abb^2 4 , find the value of (i) a^2 b^2 ,(ii)ab.
3 ⋅3 Formulae of Cubes
Formula 6.(ab)^3 a^3 3 a^2 b 3 ab^2 b^3
=a^3 b^3 3 ab(ab)
Proof : (ab)^3 (ab)(ab)^2
=(ab)(a^2 2 abb^2 )
=a(a^2 2 abb^2 )b(a^2 2 abb^2 )
=a^3 2 a^2 bab^2 a^2 b 2 ab^2 b^3
=a^3 3 a^2 b 3 ab^2 b^3
=a^3 b^3 3 ab(ab)
Corollary 9.a^3 b^3 (ab)^3 3 ab(ab)
Formula 7.(ab)^3 a^3 3 a^2 b 3 ab^2 b^3
=a^3 b^3 3 ab(ab)
Proof :(ab)^3 (ab)(ab)^2
=(ab)(a^2 2 abb^2 )
=a(a^2 2 abb^2 )b(a^2 2 abb^2 )
=a^3 2 a^2 bab^2 a^2 b 2 ab^2 b^3
=a^3 3 a^2 b 3 ab^2 b^3
=a^3 b^3 3 ab(ab)
Observe : Substituting b instead of b in formula 6, we get formula 7 :
{a(b)}^3 a^3 (b)^3 3 a(b){a(b)}
That is, (ab)^3 a^3 b^3 3 ab(ab)
Corollary 10.a^3 b^3 (ab)^3 3 ab(ab)
Formula 8.a^3 b^3 (ab)(a^2 abb^2 )
Proof :a^3 b^3 (ab)^3 3 ab(ab)
=(ab){( ab)^2 3 ab}
=(ab)(a^2 2 abb^2 3 ab)
=(ab)(a^2 abb^2 )
Formula 9.a^3 b^3 (ab)(a^2 abb^2 )
Proof :a^3 b^3 (ab)^3 3 ab(ab)
=(ab){(ab)^2 3 ab}