untitled

(Barré) #1
(ii) 2 ab(xy) 2 bc(xy) 3 ca(xy) (xy)( 2 ab 2 bc 3 ca)

(b) Expressing an expression in the form of a perfect square ;
Example 1. Resolve into factors : 4 x^2  12 x 9.


Solution : 4 x^2  12 x 9 ( 2 x)^2  2 u 2 xu 3 ( 3 )^2


= ( 2 x 3 )^2 ( 2 x 3 )( 2 x 3 )


Example 2. Resolve into factors : 9 x^2  30 xy 25 y^2.


Solution : 9 x^2  30 xy 25 y^2


= ( 3 x)^2  2 u 3 xu 5 y( 5 y)^2


= ( 3 x 5 y)^2 ( 3 x 5 y)( 3 x 5 y)
(c) Expressing an expression as the difference of two squares and then applying
the formula a^2 b^2 (ab)(ab):


Example 3. Reslove into factors : a^2  1  2 bb^2.


Solution : a^2  1  2 bb^2 a^2 (b^2  2 b 1 )


= a^2 (b 1 )^2 {a(b 1 )}{a(b 1 )}


= (ab 1 )(ab 1 )


Example 4. Resolve into factors : a^4  64 b^4.


Solution : a^4  64 b^4 (a^2 )^2 ( 8 b^2 )^2


= (a^2 )^2  2 ua^2 u 8 b^2 ( 8 b^2 )^2  16 a^2 b^2


= (a^2  8 b^2 )^2 ( 4 ab)^2


= (a^2  8 b^2  4 ab)(a^2  8 b^2  4 ab)


= (a^2  4 ab 8 b^2 )(a^2  4 ab 8 b^2 )


Activity : Resolve into factors :
1.abx^2 acx^3 adx^4 2. xa^2  144 xb^2 3. x^2  2 xy 4 y 4

(d) Using the formula x^2 (ab)xab (xa)(xb):


Example 5. Resolve into factors : x^2  12 x 35.


Solution : x^2  12 x 35 x^2 ( 5  7 )x 5 u 7


= (x 5 )(x 7 )


In this method, a polynomial of the form x^2 pxq can be factorized, if two
integers a and b can be found so that, it is ab p and ab q. For this, two
factors of q with their signs are to be taken whose algebraic sum is p. If q! 0 ,a
andb will be of same signs and if q 0 ,a and b will be of opposite signs.

Free download pdf