If ais any real number, successive multiplication of ntimes a; that is,
auauau..... uais written in the form an, where nis a positive integer.
auauau..... ua (ntimesa) = an.
Here na ooindex base orpower
Again, conversely, an = auauau..... ua (ntimes a). Exponents may
not only be positive integer, it may also be negative integer or positive fraction or
negative fraction. That is, for aR(set of real numbers) and nQ (set of
rational numbers), an is defined. Besides, it may also be irrational exponent. But as
it is out of curriculum, it has not been discussed in this chapter.
4.2 Formulae for exponents
Let, aR;m,nN.
Formula 1. amuan amn
Formula 2.
° ̄
°
®
!
! z
m n
n ma
mn
n anm
m
a
a
a , when
(^1) , when , 0
Fill in the blanks of the following table :
m!n n!m
0
,
az
aman
m 5 ,n 3 m 3 ,n 5
amuan
8 5 3
(^53) ( ) ( )
u u u u u u u
u u u u u u u u
a a
a a a a a a a a
a a a a a a a a a a a^3 ua^5 =
n
m
a
a
3
5
a
a
53
1
2
1
5
3
u u u u
u u
a a
a a a a a
a a a
a
a
?amuan=amn
and
̄
®
!
!
m n
n m
mn
anm
n
m
a
a
a when
when
,
(^1) ,
Formula 3. (ab)n anubn
We observe, ( 5 u 2 )^3 ( 5 u 2 )u( 5 u 2 )u( 5 u 2 )[a^3 auaua;a 5 u 2 ]
53 23
( 5 5 5 ) ( 2 2 2 )
5 2 5 2 5 2
u
u u u u u
u u u u u
In general, (ab)n abuabuabu.......uab [Successive multiplication of ntimesab]