anbn
a a a a b b b b
( u u u.......u )u( u u u........u )
Formula 4. ̧ ,( z 0 )
¹
·
̈
©
§ b
b
a
b
a
n
n n
We observe, 3
(^33)
2
5
2 2 2
5 5 5
2
5
2
5
2
5
2
5
u u
u u
̧^ u u^
¹
·
̈
©
§
In general,
b
a
b
a
b
a
b
a
b
an
̧^ u u u u
¹
·
̈
©
§ ........ [Successive multiplication of ntimes
b
a
]
n
n
b
a
b b b b
a a a a
u u u u
u u u u
......
......
Formula 5. a^0 1 ,(az 0 )
We have, a a^0
a
a nn
n
n
Again,
a a a a
a a a a
a
a
n
n
u u u u
u u u u
.....
.....
1
?a^0 1.
Formula 6. an ,(az 0 )
n
n n
n
a
a a
a
u
u
1
[multiplying both num. and denom. by an]
n
n n
n n
a
a
a
a
a^1
an
1
a^1 n
?an
Remark : n on n
o
a a
a
a
Formula 7. amn amn
m m m m
mn
a a ua ua u.........ua
ammm.........m
[successive multiplication of n times am]
[in the power, sum of n times of exponent m]
ȏ
Ǥ
naȐ
a^1 n
0