Solution : 4 x^1 32
or ( 22 )x^1 32 , or, 22 x^2 25
? 2 x 2 5 ,or, 2 x 5 2 , or, 2 x 3
23
?x? Solution is
23
xExercise 4.1
Simplify (1 – 10) :
- 6
3 5
33 3
2.
2 1255 8
43
- 4
3 3
3 37 7
uu
4.
7(^372) (^37)
5.( 2 ^1 5 ^1 )^1 6. ( 2 a^1 3 b^1 )^1 7.
2
2
2 1
6 ̧
̧
¹
·
̈ ̈
©
§
a
ab
- x^1 y y^1 z z^1 x,(x! 0 ,y! 0 ,z! 0 ) 9.
2 2
2 42
24 1
y
nn n- 1 1
1
11
( 3 )3
( 2 )3
y m mm
mmmProve (11 – 18) :
- 2 1
2 1
4 1
n
nn
12.
501
6 10 152 3 5 6
21 2
q p qp pq pq p- ̧ ̧ 1
¹
·
̈ ̈
©§
̧ ̧
¹·
̈ ̈
©§
̧ ̧
¹·
̈ ̈
©§
n m
nn m
m aa
aa
aa
"" "- 2 u 2 u 2 1
qrp
pqr
rpq
aa
aa
aa- 1
1 1 1̧ ̧^
¹·
̈ ̈
©§
̧ ̧
¹·
̈ ̈
©§
̧ ̧
¹·
̈ ̈
©§ ca
abc c
cab b
ba
xx
xx
xx 16. 1
̧
̧
¹·
̈
̈
©§
̧ ̧
¹·
̈
̈
©§
̧ ̧
¹·
̈
̈
©§
ca
abc c
cab b
ba
xx
xx
xx- ̧ ̧ 1
¹
·
̈ ̈
©§
̧ ̧ u
¹·
̈ ̈
©§
̧ ̧ u
¹·
̈ ̈
©§
rpq
pqrp r
rpqr q
qp
xx
xx
xx- If ax b,by candcz a, show that xyz 1
Solve (19 – 22) :
19. 4 x 8 20. 22 x^1 128 21.
1 3 2 1
3 3
x x- 2 x 21 x 3
4.4 Logarithm
Logarithm is used to find the values of exponential expressions. Logarithm is written
in brief as ‘Log’. Product, quotient, etc. of large numbers or quantities can easily be
determined by the help of log.
ȏax ayǡx yȐ