30.7 GENERATING FUNCTIONS
probability that value ofSNlies in the intervalstos+dsis given by§
Pr(s<SN≤s+ds)=
∑∞
n=0
Pr(N=n)Pr(s<X 0 +X 1 +X 2 ···+Xn≤s+ds).
Write Pr(s<SN≤s+ds)asfN(s)dsand Pr(s<X 0 +X 1 +X 2 ···+Xn≤s+ds)
asfn(s)ds.Thekth moment of the PDFfN(s) is given by
μk=
∫
skfN(s)ds=
∫
sk
∑∞
n=0
Pr(N=n)fn(s)ds
=
∑∞
n=0
Pr(N=n)
∫
skfn(s)ds
=
∑∞
n=0
hn×(k!×coefficient oftkin [MX(t)]n)
Thus the MGF ofSNis given by
MSN(t)=
∑∞
k=0
μk
k!
tk=
∑∞
n=0
hn
∑∞
k=0
tk×coefficient oftkin [MX(t)]n
=
∑∞
n=0
hn[MX(t)]n
=χN(MX(t)).
In words, the MGF of the sumSNis given by the compound functionχN(MX(t))
obtained by substitutingMX(t)fortin the PGF for the number of termsNin
the sum.
Uniqueness
If the MGF of the random variableX 1 is identical to that forX 2 then the
probability distributions ofX 1 andX 2 are identical. This is intuitively reasonable
although a rigorous proof is complicated,¶and beyond the scope of this book.
30.7.3 Characteristic function
Thecharacteristic function(CF) of a random variableXis defined as
CX(t)=E
[
eitX
]
=
{∑
je
itxjf(xj) for a discrete distribution,
∫
eitxf(x)dx for a continuous distribution (30.91)
§As in the previous section,X 0 has to be formally included, since Pr(N= 0) may be non-zero.
¶See, for example, P. A. Moran,An Introduction to Probability Theory(New York: Oxford Science
Publications, 1984).