30.9 IMPORTANT CONTINUOUS DISTRIBUTIONS
− 6 − 4 − 2 234 6 8 10 12
0. 1
0. 2
0. 3
0. 4
σ=1
σ=2
σ=3
μ=3
Figure 30.13 The Gaussian or normal distribution for meanμ=3and
various values of the standard deviationσ.
− 4 − 2 0 −^2 −^1 ay^2
1
a 2 4
z z
φ(z)
Φ(z)
Φ(a)
Φ(a)
0. 2
0. 4
0. 6
0. 8
0. 1
0. 2
0. 3
0. 4
Figure 30.14 On the left, the standard Gaussian distributionφ(z); the shaded
area gives Pr(Z<a)=Φ(a). On the right, the cumulative probability function
Φ(z) for a standard Gaussian distributionφ(z).
distribution as
F(x)=Pr(X<x)=
1
σ
√
2 π
∫x
−∞
exp
[
−
1
2
(u−μ
σ
) 2 ]
du,
(30.107)
whereuis a (dummy) integration variable. Unfortunately, this (indefinite) integral
cannot be evaluated analytically. It is therefore standard practice to tabulate val-
ues of the cumulative probability function for the standard Gaussian distribution
(see figure 30.14), i.e.
Φ(z)=Pr(Z<z)=
1
√
2 π
∫z
−∞
exp
(
−
u^2
2
)
du. (30.108)