PROBABILITY
Finally we note that, by analogy with the single-variable case, the characteristic
function and the cumulant generating function of a multivariate distribution are
defined respectively as
C(t 1 ,t 2 ,...,tn)=M(it 1 ,it 2 ,...,itn)andK(t 1 ,t 2 ,...,tn)=lnM(t 1 ,t 2 ,...,tn).
Suppose that the random variablesXi,i=1, 2 ,...,n,aredescribedbythePDF
f(x)=f(x 1 ,x 2 ,...,xn)=Nexp(−^12 xTAx),
where the column vectorx=(x 1 x 2 ··· xn)T,Ais ann×nsymmetric matrix andN
is a normalisation constant such that
∫
∞
f(x)dnx≡
∫∞
−∞
∫∞
−∞
···
∫∞
−∞
f(x 1 ,x 2 ,...,xn)dx 1 dx 2 ···dxn=1.
Find the MGF off(x).
From (30.142), the MGF is given by
M(t 1 ,t 2 ,...,tn)=N
∫
∞
exp(−^12 xTAx+tTx)dnx, (30.144)
where the column vectort=(t 1 t 2 ··· tn)T. In order to evaluatethis multiple integral,
we begin by noting that
xTAx− 2 tTx=(x−A−^1 t)TA(x−A−^1 t)−tTA−^1 t,
which is the matrix equivalent of ‘completing the square’. Using this expression in (30.144)
and making the substitutiony=x−A−^1 t,weobtain
M(t 1 ,t 2 ,...,tn)=cexp(^12 tTA−^1 t), (30.145)
where the constantcis given by
c=N
∫
∞
exp(−^12 yTAy)dny.
From the normalisation condition forN,weseethatc= 1, as indeed it must be in order
thatM(0, 0 ,...,0) = 1.
30.14 Transformation of variables in joint distributions
Suppose the random variablesXi,i=1, 2 ,...,n, are described by the multivariate
PDFf(x 1 ,x 2 ...,xn). If we wish to consider random variablesYj,j=1, 2 ,...,m,
related to theXibyYj=Yj(X 1 ,X 2 ,...,Xm) then we may calculateg(y 1 ,y 2 ,...,ym),
the PDF for theYj, in a similar way to that in the univariate case by demanding
that
|f(x 1 ,x 2 ...,xn)dx 1 dx 2 ···dxn|=|g(y 1 ,y 2 ,...,ym)dy 1 dy 2 ···dym|.
From the discussion of changing the variables in multiple integrals given in
chapter 6 it follows that, in the special case wheren=m,
g(y 1 ,y 2 ,...,ym)=f(x 1 ,x 2 ...,xn)|J|,