31.4 SOME BASIC ESTIMATORS
the form
σˆ=
(
N
N− 1
) 1 / 2
s,
wheresis the sample standard deviation. The expectation value of this estimator is given
by
E[σˆ]=
(
N
N− 1
) 1 / 2
E[(s^2 )^1 /^2 ]≈
(
N
N− 1
) 1 / 2
(E[s^2 ])^1 /^2 =σ.
An approximate expression for the variance ofσˆmay be found using (31.47) and is given
by
V[σˆ]=
N
N− 1
V[(s^2 )^1 /^2 ]≈
N
N− 1
[
d
d(s^2 )
(s^2 )^1 /^2
] 2
s^2 =E[s^2 ]
V[s^2 ]
≈
N
N− 1
[
1
4 s^2
]
s^2 =E[s^2 ]
V[s^2 ].
Using the expressions (31.43) and (31.47) forE[s^2 ]andV[s^2 ] respectively, we obtain
V[σˆ]≈
1
4 Nν 2
(
ν 4 −
N− 3
N− 1
ν 22
)
.
31.4.4 Population momentsμr
We may straightforwardly generalise our discussion of estimation of the popula-
tion meanμ(=μ 1 ) in subsection 31.4.1 to the estimation of therth population
momentμr. An obvious choice of estimator is therth sample momentmr.The
expectation value ofmris given by
E[mr]=
1
N
∑N
i=1
E[xri]=
Nμr
N
=μr,
and so it is an unbiased estimator ofμr.
The variance ofmrmay be found in a similar manner, although the calculation
is a little more complicated. We find that
V[mr]=E[(mr−μr)^2 ]
=
1
N^2
E
(
∑
i
xri−Nμr
) 2
=
1
N^2
E
∑
i
x^2 ir+
∑
i
∑
j=i
xrixrj− 2 Nμr
∑
i
xri+N^2 μ^2 r
=
1
N
μ 2 r−μ^2 r+
1
N^2
∑
i
∑
j=i
E[xrixrj]. (31.51)