31.4 SOME BASIC ESTIMATORS
the form
σˆ=(
N
N− 1
) 1 / 2
s,wheresis the sample standard deviation. The expectation value of this estimator is given
by
E[σˆ]=(
N
N− 1
) 1 / 2
E[(s^2 )^1 /^2 ]≈(
N
N− 1
) 1 / 2
(E[s^2 ])^1 /^2 =σ.An approximate expression for the variance ofσˆmay be found using (31.47) and is given
by
V[σˆ]=N
N− 1
V[(s^2 )^1 /^2 ]≈N
N− 1
[
d
d(s^2 )(s^2 )^1 /^2] 2
s^2 =E[s^2 ]V[s^2 ]≈
N
N− 1
[
1
4 s^2]
s^2 =E[s^2 ]V[s^2 ].Using the expressions (31.43) and (31.47) forE[s^2 ]andV[s^2 ] respectively, we obtain
V[σˆ]≈1
4 Nν 2(
ν 4 −N− 3
N− 1
ν 22)
.
31.4.4 Population momentsμrWe may straightforwardly generalise our discussion of estimation of the popula-
tion meanμ(=μ 1 ) in subsection 31.4.1 to the estimation of therth population
momentμr. An obvious choice of estimator is therth sample momentmr.The
expectation value ofmris given by
E[mr]=1
N∑Ni=1E[xri]=Nμr
N=μr,and so it is an unbiased estimator ofμr.
The variance ofmrmay be found in a similar manner, although the calculationis a little more complicated. We find that
V[mr]=E[(mr−μr)^2 ]=1
N^2E(
∑ixri−Nμr) 2
=1
N^2E∑ix^2 ir+∑i∑j=ixrixrj− 2 Nμr∑ixri+N^2 μ^2 r=1
Nμ 2 r−μ^2 r+1
N^2∑i∑j=iE[xrixrj]. (31.51)