8.1 VECTOR SPACES
In the above basis we may express any two vectorsaandbas
a=∑Ni=1aiˆei and b=∑Ni=1bieˆi.Furthermore,in such an orthonormal basiswe have, for anya,
〈ˆej|a〉=∑Ni=1〈ˆej|aieˆi〉=∑Ni=1ai〈ˆej|eˆi〉=aj. (8.16)Thus the components ofaare given byai=〈ˆei|a〉. Note that this isnottrue
unless the basis is orthonormal. We can write the inner product ofaandbin
terms of their components in an orthonormal basis as
〈a|b〉=〈a 1 ˆe 1 +a 2 eˆ 2 +···+aNˆeN|b 1 eˆ 1 +b 2 ˆe 2 +···+bNeˆN〉=∑Ni=1a∗ibi〈ˆei|eˆi〉+∑Ni=1∑Nj=ia∗ibj〈eˆi|ˆej〉=∑Ni=1a∗ibi,where the second equality follows from (8.14) and the third from (8.15). This is
clearly a generalisation of the expression (7.21) for the dot product of vectors in
three-dimensional space.
We may generalise the above to the case where the base vectorse 1 ,e 2 ,...,eNarenotorthonormal (or orthogonal). In general we can define theN^2 numbers
Gij=〈ei|ej〉. (8.17)Then, ifa=
∑N
i=1aieiandb=∑N
i=1biei, the inner product ofaandbis given by〈a|b〉=〈N
∑i=1aiei∣
∣
∣
∣
∣
∣∑Nj=1bjej〉=∑Ni=1∑Nj=1a∗ibj〈ei|ej〉=∑Ni=1∑Nj=1a∗iGijbj. (8.18)We further note that from (8.17) and the properties of the inner product we
requireGij=G∗ji. This in turn ensures that‖a‖=〈a|a〉is real, since then
〈a|a〉∗=∑Ni=1∑Nj=1aiG∗ija∗j=∑Nj=1∑Ni=1a∗jGjiai=〈a|a〉.