SPECIAL FUNCTIONS
If we letx=n+y,then
lnx=lnn+ln
(
1+
y
n
)
=lnn+
y
n
−
y^2
2 n^2
+
y^3
3 n^3
−···.
Substituting this result into (18.161), we obtain
n!=
∫∞
−n
exp
[
n
(
lnn+
y
n
−
y^2
2 n^2
+···
)
−n−y
]
dy.
Thus, whennis sufficiently large, we may approximaten!by
n!≈enlnn−n
∫∞
−∞
e−y
(^2) /(2n)
dy=enlnn−n
√
2 πn=
√
2 πn nne−n,
which is Stirling’s approximation (18.160).
18.12.2 The beta function
Thebeta functionis defined by
B(m, n)=
∫ 1
0
xm−^1 (1−x)n−^1 dx, (18.162)
which converges form>0,n>0, wheremandnare, in general, real numbers.
By lettingx=1−yin (18.162) it is easy to show thatB(m, n)=B(n, m). Other
useful representations of the beta function may be obtained by suitable changes
of variable. For example, puttingx=(1+y)−^1 in (18.162), we find that
B(m, n)=
∫∞
0
yn−^1 dy
(1 +y)m+n
. (18.163)
Alternatively, if we letx=sin^2 θin (18.162), we obtain immediately
B(m, n)=2
∫π/ 2
0
sin^2 m−^1 θcos^2 n−^1 θdθ. (18.164)
The beta function may also be written in terms of the gamma function as
B(m, n)=
Γ(m)Γ(n)
Γ(m+n)
. (18.165)
Prove the result (18.165).
Using (18.157), we have
Γ(n)Γ(m)=4
∫∞
0
x^2 n−^1 e−x
2
dx
∫∞
0
y^2 m−^1 e−y
2
dy
=4
∫∞
0
∫∞
0
x^2 n−^1 y^2 m−^1 e−(x
(^2) +y (^2) )
dx dy.