PDES: GENERAL AND PARTICULAR SOLUTIONS
(b)y
∂u
∂x
−x
∂u
∂y
=3x, u(1,0) = 2;
(c) y^2
∂u
∂x
+x^2
∂u
∂y
=x^2 y^2 (x^3 +y^3 ), no boundary conditions.
20.7 Solve
sinx
∂u
∂x
+cosx
∂u
∂y
=cosx
subject to (a)u(π/ 2 ,y)=0and(b)u(π/ 2 ,y)=y(y+1).
20.8 A functionu(x, y)satisfies
2
∂u
∂x
+3
∂u
∂y
=10,
and takes the value 3 on the liney=4x. Evaluateu(2,4).
20.9 Ifu(x, y)satisfies
∂^2 u
∂x^2
− 3
∂^2 u
∂x∂y
+2
∂^2 u
∂y^2
=0
andu=−x^2 and∂u/∂y=0fory=0andallx, find the value ofu(0,1).
20.10 Consider the partial differential equation
∂^2 u
∂x^2
− 3
∂^2 u
∂x∂y
+2
∂^2 u
∂y^2
=0. (∗)
(a) Find the functionu(x, y) that satisfies (∗) and the boundary conditionu=
∂u/∂y=1wheny=0forallx. Evaluateu(0,1).
(b) In which region of thexy-plane wouldube determined if the boundary
condition wereu=∂u/∂y=1wheny=0forallx>0?
20.11 In those cases in which it is possible to do so, evaluateu(2,2), whereu(x, y)is
the solution of
2 y
∂u
∂x
−x
∂u
∂y
=xy(2y^2 −x^2 )
that satisfies the (separate) boundary conditions given below.
(a) u(x,1) =x^2 for allx.
(b)u(x,1) =x^2 forx≥ 0.
(c) u(x,1) =x^2 for 0≤x≤ 3.
(d)u(x,0) =xforx≥ 0.
(e) u(x,0) =xfor allx.
(f) u(1,
√
10) = 5.
(g) u(
√
10 ,1) = 5.
20.12 Solve
6
∂^2 u
∂x^2
− 5
∂^2 u
∂x∂y
+
∂^2 u
∂y^2
=14,
subject tou=2x+1 and∂u/∂y=4− 6 x, both on the liney=0.
20.13 By changing the independent variables in the previous exercise to
ξ=x+2y and η=x+3y,
show that it must be possible to write 14(x^2 +5xy+6y^2 )intheform
f 1 (x+2y)+f 2 (x+3y)−(x^2 +y^2 ),
and determine the forms off 1 (z)andf 2 (z).