2.2 INTEGRATION
found near the end of subsection 2.1.1. A few are presented below, using the form
given in (2.30):
∫
adx=ax+c,
∫
axndx=
axn+1
n+1
+c,
∫
eaxdx=
eax
a
+c,
∫
a
x
dx=alnx+c,
∫
acosbx dx=
asinbx
b
+c,
∫
asinbx dx=
−acosbx
b
+c,
∫
atanbx dx=
−aln(cosbx)
b
+c,
∫
acosbxsinnbx dx=
asinn+1bx
b(n+1)
+c,
∫
a
a^2 +x^2
dx=tan−^1
(x
a
)
+c,
∫
asinbxcosnbx dx=
−acosn+1bx
b(n+1)
+c,
∫
− 1
√
a^2 −x^2
dx=cos−^1
(x
a
)
+c,
∫
1
√
a^2 −x^2
dx=sin−^1
(x
a
)
+c,
where the integrals that depend onnare valid for alln=−1andwhereaandb
are constants. In the two final results|x|≤a.
2.2.4 Integration of sinusoidal functions
Integrals of the type
∫
sinnxdxand
∫
cosnxdxmay be found by using trigono-
metric expansions. Two methods are applicable, one for oddnand the other for
evenn. They are best illustrated by example.
Evaluate the integralI=
∫
sin^5 xdx.
Rewriting the integral as a product of sinxand an even power of sinx, and then using
the relation sin^2 x=1−cos^2 xyields
I=
∫
sin^4 xsinxdx
=
∫
(1−cos^2 x)^2 sinxdx
=
∫
(1−2cos^2 x+cos^4 x)sinxdx
=
∫
(sinx−2sinxcos^2 x+sinxcos^4 x)dx
=−cosx+^23 cos^3 x−^15 cos^5 x+c,
where the integration has been carried out using the results of subsection 2.2.3.