1042 25 Equilibrium Statistical Mechanics. I. The Probability Distribution for Molecular States
Table 25.1 Vibrational States for a System of Four Harmonic Oscillators
System State No. (k) v 1 v 2 v 3 v 4 N 0 N 1 N 2 N 3 N 4 W({N})
1 111104000 1
2 0112 12100 12
3 012112100
4 021112100
5 101212100
6 102112100
7 201112100
8 210112100
9 120112100
10 110212100
11 211012100
12 121012100
13 112012100
14 002220200 6
15 020220200
16 200220200
17 022020200
18 202020200
19 220020200
20 0013 21010 12
21 003121010
22 010321010
23 030121010
24 100321010
25 300121010
26 013021010
27 031021010
28 103021010
29 301021010
30 130021010
31 310021010
32 000430001 4
33 004030001
34 040030001
35 400030001
The Postulates of Statistical Mechanics
Although we know the macrostate of our model system, we have no information about
which of the 35 microstates the system occupies. We make an assumption that is called
thefirst postulate of statistical mechanics:
Postulate 1. A macroscopic property of a system can be equated to the average (mean
value) of the corresponding property over all of the system microstates that are compatible
with the macroscopic state of the system.
To define the type of average to be taken, we make another fundamental assumption,
called thesecond postulate of statistical mechanics: