25.3 The Probability Distribution and the Molecular Partition Function 1059
0123456 7Curve representing the
function exp( 2 h^2 nx^2 /8ma^2 )Value of termnx (quantum number)Figure 25.2 A Graphical Representation of the Translational Partition Function
(Schematic).in Exercise 25.14. The factorszyandzzare similar tozxexcept for the replacement
ofabyborc, so the translational partition function can be written asztr(
2 πm
h^2 β) 3 / 2
abc(
2 πm
h^2 β) 3 / 2
V (25.3-18)
whereVabc, the volume of the box containing the gas. The thermodynamic proper-
ties of a dilute gas are independent of the shape of the container in which it is confined,
so we will use the second version of Eq. (25.3-18).
The parameterβcan now be evaluated. We substitute Eq. (25.3-18) into Eq. (25.3-7),
assuming thatzelis equal to a constant:U
N(
∂
∂βln(ztrzel))
V(
∂
∂βln(ztr))
V+
(
∂
∂βln(zel))
V(
∂
∂βln(ztr))
V+ 0
(
∂
∂βln((
2 πm
h^2 β) 3 / 2
V
))
V−
3
2
dln(1/β)
dβ3
2
dln(β)
dβ3
2 β(25.3-19)
To make Eq. (25.3-19) agree with Eq. (25.3-8) we setβ1
kBT(25.3-20)
The translational partition function is nowztr(
2 πmkBT
h^2) 3 / 2
V (any gaseous substance) (25.3-21)