25.4 The Calculation of Molecular Partition Functions 1069
The value in Example 25.7 is typical for molecules of moderate size near room
temperature, and is large enough to be a good approximation.The Vibrational Partition Function
If the zero-point vibrational energy is included as part of the electronic energy, the
vibrational energy of a diatomic molecule is given byεvibεvhνevhcν ̃ev (25.4-14)wherevis the vibrational quantum number. The vibrational frequencyνeis given by
Eq. (22.2-30):νe1
2 π√
k
μ(25.4-15)
wherekis the vibrational force constant andμis the reduced mass of the nuclei. The
parameter ̃νeis equal toνe/cwherecis the speed of light.
Since the vibrational levels are nondegenerate, the vibrational partition function of
a diatomic molecule iszvib∑∞
v 0e−hνev/kBT∑∞
v 0av (25.4-16)whereaexp(−hν/kBT). This sum is ageometric progressionwith infinitely many
terms, given by a well-known formula∑∞v 0av1
1 −a(25.4-17)
This formula is valid if|a|<1, which is satisfied byaexp(−hνe/kBT). The vibra-
tional partition function is given byzvib1
1 −e−hνe/kBT1
1 −e−hcv ̃e/kBT(25.4-18)
EXAMPLE25.8
Calculate the vibrational partition function of^35 Cl 2 at 298.15 K. The vibrational frequency
is 1. 6780 × 1013 s−^1.
Solution
Letxhνe/kBT:x
(6. 6261 × 10 −^34 J s)(1. 6780 × 1013 s−^1 )
(
1. 3807 × 10 −^23 JK−^1)
( 298 .15 K) 2. 701zvib1
1 −e−x
1
1 −e−^2.^701 1. 0720