26.2 Working Equations for the Thermodynamic Functions of a Dilute Gas 1091
Solution
zel≈ 2 + 2 e−ε^1 /kBT 2 +2 exp
(
− 2. 380 × 10 −^21 J
(1. 3807 × 10 −^23 JK−^1 )(298.15 K)
)
≈ 2 + 2 e−^0.^57815 3. 1219
Um,el≈
NAv
zel
(
0 +g 1 ε 1 e−ε^1 /kBT
)
≈
6. 02214 × 1023 mol−^1
3. 1219
(
0 +2(2. 38 × 10 −^21 J)e−^0.^57815
)
≈ 515 .1 J mol−^1
The Rotational Energy of a Dilute Gas
For a diatomic substance or a polyatomic substance with linear molecules the rotational
energy is given by
UrotNkBT^2
(
dln(zrot)
dT
)
V
NkBT^2
(
dln(8π^2 IkBT/σh^2
dT
)
NkBT^2
dln(constant)
dT
+NkBT^2
dln(T)
dT
NkBT^2
1
T
UrotNkBTnRT (diatomic or linear molecules) (26.2-6)
For a polyatomic substance with nonlinear molecules,zrotis proportional toT^3 /^2 so
that
Urot
3
2
NkBT
3
2
nRT (nonlinear molecules) (26.2-7)
Exercise 26.5
Show by differentiation that Eq. (26.2-7) is correct.
The Vibrational Energy of a Dilute Gas
If the zero-point vibrational energy is excluded from the vibrational energy, the vibra-
tional energy of a dilute diatomic gas is given by
UvibNkBT^2
(
dln(zvib)
dT
)
V
NkBT^2
d
dT
[
ln
(
1
1 −e−hν/kBT
)]
Uvib
Nhc ̃νe
ehc ̃νe/kBT− 1
(diatomic substance) (26.2-8)