26.2 Working Equations for the Thermodynamic Functions of a Dilute Gas 1091
Solutionzel≈ 2 + 2 e−ε^1 /kBT 2 +2 exp(
− 2. 380 × 10 −^21 J
(1. 3807 × 10 −^23 JK−^1 )(298.15 K))≈ 2 + 2 e−^0.^57815 3. 1219Um,el≈
NAv
zel(
0 +g 1 ε 1 e−ε^1 /kBT)≈
6. 02214 × 1023 mol−^1
3. 1219(
0 +2(2. 38 × 10 −^21 J)e−^0.^57815)≈ 515 .1 J mol−^1The Rotational Energy of a Dilute Gas
For a diatomic substance or a polyatomic substance with linear molecules the rotational
energy is given byUrotNkBT^2(
dln(zrot)
dT)
VNkBT^2(
dln(8π^2 IkBT/σh^2
dT)
NkBT^2dln(constant)
dT+NkBT^2dln(T)
dTNkBT^21
T
UrotNkBTnRT (diatomic or linear molecules) (26.2-6)For a polyatomic substance with nonlinear molecules,zrotis proportional toT^3 /^2 so
thatUrot3
2
NkBT3
2
nRT (nonlinear molecules) (26.2-7)Exercise 26.5
Show by differentiation that Eq. (26.2-7) is correct.The Vibrational Energy of a Dilute Gas
If the zero-point vibrational energy is excluded from the vibrational energy, the vibra-
tional energy of a dilute diatomic gas is given byUvibNkBT^2(
dln(zvib)
dT)
VNkBT^2d
dT[
ln(
1
1 −e−hν/kBT)]
UvibNhc ̃νe
ehc ̃νe/kBT− 1(diatomic substance) (26.2-8)