Physical Chemistry Third Edition

(C. Jardin) #1
1100 26 Equilibrium Statistical Mechanics. II. Statistical Thermodynamics

EXAMPLE26.10

Calculate the chemical potential and the Gibbs energy of 1.000 mol of^35 Cl 2 at 298.15 K and
1.000 atm.
Solution
We take the energy of the ground electronic state as zero. From Example 25.7,zrot 424 .7,
and from Example 25.8,zvib 1 .0720. Since the ground electronic state is nondegenerate
and since all excited states must lie high in energy,zel≈1, and the electronic contributions
toμandGare approximately equal to zero.

ztr
N


(
2 πmkBT
h^2

) 3 / 2
V
N


(
2 πmkBT
h^2

) 3 / 2
kBT
P


(
2 πM
NAvh^2

) 3 / 2
(kBT)^5 /^2
P



(
2 π(0.0699377 kg mol−^1 )
(6. 02214 × 1023 mol−^1 )(6. 6261 × 10 −^34 Js)^2

) 3 / 2
[(1. 3807 × 10 −^23 JK−^1 )(298.15 K)]5/2
101325 Pa
 2. 299 × 107
μtr−kBTln(2. 299 × 107 )− 6. 978 × 10 −^20 J
μrot−kBTln(424.7)− 2. 491 × 10 −^20 J
μvib−kBTln(1.072)− 2. 86 × 10 −^22 J
μel≈ 0
μ− 5. 35 × 10 −^20 J
GNμ(1.000 mol)(6. 02214 × 10 −^23 mol−^1 )(− 5. 35 × 10 −^20 J)
− 3. 22 × 104 J

PROBLEMS


Section 26.2: Working Equations for the Thermodynamic
Functions of a Dilute Gas


26.8Assuming the harmonic oscillator–rigid rotor
approximation, and taking the energy of the electronic
ground state to be zero:
a. Find the translational contribution to the energy of
1.000 mol of F 2 at 1.000 bar and 298.15 K.


b. Find the rotational contribution to the energy of
1.000 mol of F 2 at 1.000 bar and 298.15 K.

c.Find the electronic contribution to the entropy of 1.000
mol of F 2 at 1.000 bar and 298.15 K.

d.Find the vibrational factor in the partition function of
F 2 gas at 1.000 bar and 298.15 K.

26.9 Calculate the standard-state molar entropy of argon at
298.15 K. Compare your result with the experimental
value, 154.845 J K−^1 mol−^1. Compare your result with the


value for helium at the same temperature and comment on
the difference.
26.10 a.Calculate the value of each factor in the molecular
partition function of^16 O 2 gas at 500.0 K and a pressure
ofP◦ 1 .000 bar.
b. Calculate the standard-state molar thermodynamic
energy,Um◦, for O 2 at 500.0 K. Give the values of the
translational, rotational, vibrational, and electronic
contributions.
c.Calculate the standard-state molar thermodynamic
entropy,S◦m,ofO 2 at 500.0 K. Give the values of the
translational, rotational, vibrational, and electronic
contributions.
26.11Calculate the values ofHm◦,U◦m,A◦m,G◦m,Sm◦, andC◦V,m
for krypton gas at 298.15 K.
26.12Calculate the standard-state molar entropy of CO at
298.15 K.
Free download pdf