26.4 The Activated Complex Theory of Bimolecular Chemical Reaction Rates in Dilute Gases 1113
z‡rot,HHBr′′
8 π^2 IekBT
h^2
8 π^2 (1. 73 × 10 −^46 kg m^2 )(1. 3807 × 10 −^23 JK−^1 )(500.0K)
(6. 6261 × 10 −^34 Js)^2
214. 3
Normal mode number 1 is the symmetric stretch:
hc ̃ν 1
kBT
(6. 6261 × 10 −^34 J s)(2. 9979 × 1010 ms−^1 )(2340 cm−^1 )
(1. 3807 × 10 −^23 JK−^1 )(500.0K)
6. 73
Normal mode number 2 is the bend (there are two of these)
hcν ̃ 2
kBT
(6. 6261 × 10 −^34 J s)(2. 9979 × 1010 cm s−^1 )(460 cm−^1 )
(1. 3807 × 10 −^23 JK−^1 )(500.0K)
1. 32
zvib,HHBr
1
1 −e−x^1
(
1
1 −e−x^2
) 2
1
1 −e−^6.^73
(
1
1 −e−^1.^32
) 2
(1.0011)(1.3645)^2 1. 864
z‡HHBr(1. 558 × 1033 m−^3 )(214.3)(1.864) 6. 22 × 1035 m−^3
k
kBT
h
e−∆ε
‡
0 /kBT
z‡
′′
HHBr
z′′Hz′′HBr
NAv
(1. 3807 × 10 −^23 JK−^1 )(500.0K)
6. 6261 × 10 −^34 Js
exp
(
− 8. 3 × 10 −^21 J
(1. 3807 × 10 −^23 JK−^1 )(500.0K)
)
×
6. 22 × 1035 m−^3
(4. 254 × 1030 m−^3 )(6. 161 × 1034 m−^3 )
(6. 02214 × 1023 mol−^1 )
4. 475 × 106 m^3 mol−^1 s−^1
4. 475 × 109 L mol−^1 s−^1
Exercise 26.12
a.Calculate the rate constant at 500.0 K for the reverse of the reaction in the previous example:
H 2 +Br→H+HBr
Assume the same activated complex as in the forward reaction so that∆ε‡ 0 1. 24 × 10 −^19 J
for the reverse reaction.
b.Use the values of the forward and reverse rate constants to calculate the equilibrium constant
for the reaction. If you have already studied Part I of this textbook, compare your result with
the result of a calculation from thermodynamic data.
Equation (26.4-15) can be written in a “thermodynamic” form, using Eq. (7.1-20):
k
kBT
h
1
c◦
K
‡
c
kBT
h
1
c◦
e−∆G
‡◦/RT
(26.4-16)