110 3 The Second and Third Laws of Thermodynamics: Entropy
From Eq. (3.1-10) the amount of heat put into the hot reservoir by the Carnot heat
pump is equal to
−q′ 4 (c)
w′(c)
1 +q 3 (c)/q 1 (c)
The amount of heat removed from the hot reservoir by the superengine is
q 1 (s)−
w(s)
1 +q 3 (s)/q 1 (s)
<
w′(c)
1 +q 3 (c)/q 1 (c)
Therefore
q 1 (s)<−q′ 4 (c)
A greater amount of heat has been put into the hot reservoir by the Carnot heat pump
than was removed from this reservoir by the superengine. This conclusion is contrary
to the Clausius statement of the second law. The only source of this contradiction is
our assumption that a superengine exists with a greater efficiency than that of a Carnot
engine, so the efficiency of the second reversible engine cannot be larger than that of
a Carnot engine.
The second reversible heat engine also cannot have a smaller efficiency than the
first Carnot engine. If it did its coefficient of performance as a heat pump, which is
the reciprocal of its efficiency as a heat engine, would be larger than that of a Carnot
heat pump, and the second law could be violated by using the first engine to drive the
second engine as a heat pump. We have shown thatthe efficiency of a reversible heat
engine operating with two heat reservoirs does not depend on the nature of the working
fluid or on the details of its design, but depends only on the temperatures of the heat
reservoirs.
Exercise 3.1
Carry out the proof that a reversible engine cannot have a smaller efficiency than a Carnot engine
if it uses the same heat reservoirs.
A heat engine operating irreversibly can have a lower efficiency than a Carnot
engine. If a heat engine operates irreversibly its coefficient of performance as a heat
pump will not necessarily be the reciprocal of its engine efficiency since each step
cannot necessarily be reversed. Therefore, driving the irreversible engine backward as
a heat pump by a Carnot engine would not necessarily violate the second law if it has
a lower efficiency than a Carnot engine.
The Thermodynamic Temperature and the Zeroth Law
of Thermodynamics
The zeroth law of thermodynamics states a fact that many had tacitly accepted during
the development of thermodynamics, and it gradually became apparent that it required
a formal statement. It is stated:If two objects, A and B, are at thermal equilibrium
with each other and if B is at thermal equilibrium with a third object, C, then A is also
at thermal equilibrium with C.This law is considered to be basic to the other laws
of thermodynamics, so it is called the zeroth law of thermodynamics, although it was