1286 G The Perturbation Method
(Ĥ(0)+λ̂H′)(Ψ
(0)
n,corr+Ψ
(1)
n λ+Ψ
(2)
n λ
(^2) + ···)
(E(0)+E(1)nλ+E(2)n λ^2 + ···)(Ψ(0)n +Ψ(1)nλ+Ψ(2)nλ^2 + ···) (G-19)
The coefficients of any power ofλon the two sides of the equation must be equal. For
the terms proportional toλwe have
̂H(0)Ψn(1)+Ĥ′Ψ(0)n,corrE(0)Ψ(1)n +E(1)nΨ(0)n,corr (G-20)
or
(Ĥ(0)−E(0))Ψn(1)(E(1)n −Ĥ′)Ψ
(0)
n,corr (G-21)
We now multiply by the complex conjugate of one of the initial wave functions,Ψ(0)m,init∗ ,
and integrate:
∫
Ψ(0)m,init∗Ĥ(0)Ψ(1)n dq−E(0)
∫
Ψ(0)m,init∗ Ψ(1)n dq
E(1)n
∫
Ψ(0)m,init∗Ψ(0)n,corrdq−
∫
Ψ(0)m,init∗ ̂H′Ψn(0),corrdq (G-22)
We now apply the hermitian property to the first term on the left-hand side of this
equation and use the fact that the eigenvalues of a hermitian operator are real:
∫
Ψ(0)m,init∗ ̂H(0)Ψn(1)dq
∫
(Ĥ(0)∗Ψ(0)m,init∗)Ψn(1)dqE(0)
∫
Ψ(0)m,init∗Ψ(1)ndq (G-23)
We omit any subscript onE(0)since all of the zero-order wave functions correspond
to the same value ofE(0). The two terms on the left side of Eq. (G-22) cancel and we
have
0 E(1)n
∫
Ψ
(0)∗
m,initΨ
(0)
n,corrdq−
∫
Ψ
(0)∗
m,initĤ
′Ψ(0)n,corrdq (G-24)
We use the expression in Eq. (G-15):
0 E(1)n
∫
Ψ(0)m,init∗
∑g
j 1
cnjΨ(0)j,initdq−
∫
Ψ(0)m,init∗ ̂H′
∑g
j 1
cnjΨ(0)j,initdq (G-25)
We interchange the order of integration and summation to obtain
0 E(1)n
∑g
j 1
cnj
∫
Ψ(0)m,init∗ Ψ(0)j,initdq−
∑g
j 1
cnj
∫
Ψ(0)m,init∗ ̂H′Ψ(0)j,initdq (G-26)
Since the initial zero-order functions are assumed to be normalized and orthogonal to
each other, the integral in the first sum vanishes ifmjand equals unity ifmj:
∫
Ψ(0)m,init∗Ψ(0)j,initdqδmj
{
1ifmj
0ifmj
(G-27)
whereδmjis called the Kronecker delta. We now can write
0 E(1)n
∑g
j 1
cnjδmj−
∑g
j 1
cnjHmj′ (G-28)