1342 K Answers to Numerical Exercises and Odd-Numbered Numerical Problems
23.19
b. ForJ0,λ 0 .2601 cm
ForJ1,λ 0 .1301 cm
ForJ2,λ 0 .08671 cm
ForJ3,λ 0 .06504 cm
23.21
a. λBC 1. 2082 × 10 −^4 cm 1. 208 μm
b. splitting 41 .912 cm−^1
c.λP 1. 214 × 10 −^4 cm 1. 214 μm
λR 1. 202 × 10 −^4 cm 1. 202 μm
23.23
1 /λ 22 .027 cm−^1 ,44.054 cm−^1 ,66.081 cm−^1 ,
and so on.Jmp 2
23.25
(a) CH 3 Cl and (c) NH 3
23.27
For the fundamental band,
1
λBC
2558 .54 cm−^1
For the first overtone band,
1
λBC
5026 .64 cm−^1
For the second overtone band,
1
λBC
7404 .30 cm−^1
For thev1tov2 transition,
1
λBC
2468 .10 cm−^1
23.29
ForJmp2,T191 K
ForJmp3,T373 K
23.31
c.ForJ0,
1
λR
4263 .6cm−^1
ForJ1,
1
λR
4267 .3cm−^1
ForJ2,
1
λR
4271 .0cm−^1
23.33
Forv′′0 andv′ 0
band origin:
1
λ
77422 cm−^1
Lines at 77440 cm−^1 , 77456 cm−^1 , 77440 cm−^1
and 77377 cm−^1
Forv′′0 andv′1,
band origin:
1
λ
80106 cm−^1
Lines at 80124 cm−^1 80140 cm−^1 , 80084 cm−^1
and 80061 cm−^1
Forv′′1 andv′0,
band origin:
1
λ
74431 cm−^1
Lines at 74449 cm−^1 , 74465 cm−^1 , 74409 cm−^1
and 74386 cm−^1
23.35
712 .1cm−^1 : bend
2089 .0cm−^1 : symmetric stretch
3312 .0cm−^1 : asymmetric stretch
1412 .0cm−^1 : first overtone of the bend
2116 .7cm−^1 : second overtone of the bend
2800 .3cm−^1 : is a combination band: bend and
symmetric stretch
4004 .5cm−^1 : combination band: bend and asymmetric
stretch
5394 cm−^1 : combination band: symmetric stretch and
asymmetric stretch
6521 .7cm−^1 : first overtone of the asymmetric stretch
23.37
overtones near 1178 cm−^1 , 2570 cm−^1 , and 4447 cm−^1
bend–symmetric stretch combination band near
1874 cm−^1
bend–asymmetric stretch combination band near
2228 cm−^1
symmetric stretch–asymmetric stretch combination band
near 3508 cm−^1
23.41
a. ν 7. 97 × 1014 s−^1
λ 3. 76 × 10 −^7 m376 nm
b. ν 7. 24 × 1014 s− 1
λ 4. 14 × 10 −^7 m414 nm
23.43
Biphenyl, 9,10-diphenylanthracene, and
trans-1,3-pentadiene
23.45
re 7. 57 × 10 −^11 m 75 .7pm 0 .757 Å