4.2 Fundamental Relations for Closed Simple Systems 163
We can now derive the formula for∆Sfor an isothermal volume change in an ideal
gas in a different way from that used in Chapter 4:∆S
∫V 2
V 1(
∂S
∂V
)
T,ndV∫V 2
V 1(
∂P
∂T
)
V,ndV∫V 2
V 1(
nR
V)
dVnRln(
V 2
V 1
)
(4.2-23)
We can also obtain an expression for∆Sfor nonideal gases, liquids, and solids.EXAMPLE 4.3
a.Find an expression for (∂S/∂V)T,nfornmoles of a gas obeying the truncated virial
equation of statePVm
RT
1 +
B 2
VmwhereB 2 is a function ofTand whereVmis the molar volume.
b.Evaluate the expression for (∂S/∂V)T,n for 1.000 mol of argon in 25.00 L
at 298.15 K. At this temperature,B 2 − 15 .8cm^3 mol−^1 and dB 2 /dT 0. 25 ×
10 −^6 m^3 mol−^1 K−^1.
c.Find an expression for∆Sfor an isothermal volume change fornmoles of a gas obeying
the truncated virial equation of state in part a. Compare your result with the corresponding
equation for an ideal gas.
d.Find the value of∆Sfor expanding 1.000 mol of argon isothermally at 298.15 K from
25.00 L to 50.00 L. Compare the result with the result assuming argon to be an ideal gas.
Solution
a.KeepingVandnconstant is the same as keepingVmconstant.(
∂S
∂V)T,n(
∂P
∂T)V,n⎛
⎝∂(
RT /Vm+RT B 2 /Vm^2)∂T⎞
⎠
Vm
R
Vm
+
R
Vm^2[
B 2 +T
dB 2
dT]b.(
∂S
∂V)T,n
8 .3145 J K−^1 mol−^1
0 .025 m^3 mol−^1+
8 .3145 J−^1 mol−^1
(
0 .025 m^3 mol−^1) 2×[(
− 15. 8 × 10 −^6 m^3 mol−^1)+(298.15 K)(
0. 25 × 10 −^6 m^3 mol−^1 K−^1)] 332 .6Nm−^2 K−^1 + 0 .58Nm−^2 K−^1
333 .2Nm−^2 K−^1
333 .2JK−^1 m−^3The correction for gas nonideality, 0.58 J K−^1 m−^3 , is numerically almost insignificant
in this case, but for smaller molar volumes it would be more important.