164 4 The Thermodynamics of Real Systems
c.For an isothermal process in a closed system,∆S∫cdS∫V 2V 1(
∂S
∂V)rndV∫V 2V 1[
R
Vm
+
R
Vm^2(
B 2 +T
dB 2
dT)]
dVn∫V 2V 1R
VmdVm+n(
B 2 +T
dB 2
dT)∫V 2V 1R
Vm^2dVmnRln(
Vm2
Vm1)
−n(
B 2 +TdB 2
dT)(
1
Vm2
−1
Vm1)d. ∆S(1.000 mol)(8.3145 J K−^1 mol−^1 )ln(
0. 05000
0. 02500)−(1.000 mol)(8.3145 J−^1 mol−^1 )
×(
− 15. 8 × 10 −^6 m^3 mol−^1)+(298.15 K)(0. 20 × 10 −^6 m^3 mol−^1 K−^1 )×(
1
0 .05000 m^3 mol−^1−
1
0 .02500 m^3 mol−^1) 5 .763JK−^1 + 0 .00729 J K−^1 5 .770JK−^1The correction for nonideality, 0.007JK−^1 , is numerically almost insignificant in
this case.We can also derive an expression for∆Sfor an isothermal pressure change, using
another Maxwell relation:∆S
∫P 2
P 1(
∂S
∂P
)
T,ndP−∫P 2
P 1(
∂V
∂T
)
P,ndP (4.2-24)EXAMPLE 4.4
a.Find an expression for∆Sfor an isothermal pressure change on a pure liquid assuming
that the volume of the liquid is constant.
b.Find an expression for∆Sfor an isothermal pressure change on a pure liquid, assuming
that the volume of the liquid is given byV(T,P)V(T 1 ,P 1 )[1+α(T−T 1 )−κT(P−P 1 )]whereαandκTare equal to constants and whereP 1 andT 1 are a reference pressure and
a reference temperature.
c.Find∆Sfor pressurizing 1.000 mol of liquid water isothermally at 298.15 K from a
pressure of 1.00 atm to a pressure of 100.00 atm.
Solution
a.
∆S∫P 2P 1(
∂S
∂P)T,ndP−∫P 2P 1(
∂V
∂T)P,ndP−∫P 2P 1V αdP 0∆S0 sinceα0ifVis constant.