4.5 Multicomponent Systems 183
However, the partial derivatives in this equation are not equal to any simple thermody-
namic variables as are the partial derivatives in Eq. (4.5-2). We therefore say that the
natural independent variablesfor the Gibbs energy areT,P,n 1 ,n 2 ,...,nc.EXAMPLE4.17
Use an analogue of Eq. (B-7) of Appendix B to write a relation between (∂G/∂ni)T,V,n′
andμi.
Solution
(
∂G
∂ni)T,V,n′(
∂G
∂ni)T,P,n′+(
∂G
∂P)T,n(
∂P
∂ni)T,V,n′μi+V(
∂P
∂ni)T,V,n′The internal energy, the enthalpy, and the Helmholtz energy have their own sets
of natural independent variables. From Eq. (4.5-3), Eq. (4.5-8), and the relation
GH−TS,dHdG+TdS+SdTdH−SdT+VdP+∑ci 1μidni+TdS+SdTdHTdS+VdP+∑ci 1μidni (4.5-6)The natural independent variables forHareS,P,n 1 ,n 2 ,...,nc. We can see from
Eq. (4.5-6) thatμi(
∂H
∂ni)
S,P,n′(4.5-7)
Similarly, sinceUH−PV,dUTdS−PdV+∑ci 1μidni (4.5-8)so that the natural independent variables forUareS,V,n 1 ,n 2 ,...,nc. AlsodA−SdT−VdP+∑ci 1μidni (4.5-9)