4.5 Multicomponent Systems 185
Exercise 4.15
a.Show thatμiAi+PVi
b.Show thatμiUi+PVi−TSiThere are some equations similar to the Maxwell relations that apply to multicom-
ponent open systems. We begin with the Gibbs equation, Eq. (4.5-3):dG−SdT+VdP+∑ci 1μidni (4.5-13)Using the Euler reciprocity relation, Eq. (B-13) of Appendix B,(
∂S
∂ni)
T,P,n′Si−(
∂μi
∂T)
P,n(4.5-14)
A second use of the Euler reciprocity relation gives(
∂V
∂ni)
T,P,n′Vi(
∂μi
∂P)
T,n(4.5-15)
Various similar equations can be derived.Exercise 4.16
Verify Eq. (4.5-14) and Eq. (4.5-15).The Partial Molar Quantities in a One-Component System
The equilibrium thermodynamic state of a simple one-component open system can be
specified byT,P, andn, the amount of the single component. This gives the differential
relation for a general extensive quantity,Y, in a one-component system:dY(
∂Y
∂T
)
P,ndT+(
∂Y
∂P
)
T,ndP+(
∂Y
∂n)
T,Pdn (4.5-16)In a one-component system the molar quantityYmis given byYmY
n(4.5-17)
The molar quantityYmis an intensive quantity. Because an intensive quantity cannot
depend on an extensive quantity,Ymdepends only onTandP. ThereforeY
(
∂Y
∂n)
T,P(
∂(nYm)
∂n)
T,PYm (4.5-18)