308 7 Chemical Equilibrium
c.T∆⎛
⎝−(
G◦m−Hm,298◦ ◦)T⎞
⎠(298.15 K)2(213.795JK−^1 mol−^1 )− 2(
197 .653JK−^1 mol−^1)− 205 .147JK−^1 mol−^1
(298.15 K)(− 0 .172863 kJ K−^1 mol−^1 )
− 51 .539 kJ mol−^1∆G◦∆H◦ 298 −T∆⎛
⎝−(
G◦m−H◦m,298◦)T⎞
⎠− 565 .990 kJ mol−^1 + 51 .539 kJ mol−^1
− 514 .451 kJ mol−^1Exercise 7.1
a.Using Gibbs energy changes of formation from Table A.8, calculate∆G◦at 298.15 K for the
reactionPCl 5 (g)PCl 3 (g)+Cl 2 (g)b.Calculate∆H◦and∆S◦at 298.15 K for the same reaction.
c.Calculate∆G◦at 298.15 K for the same reaction using Eq. (7.1-15). Compare with the answer
of part a.
d.Calculate∆G◦at 298.15 K for the same reaction using values of−(G◦m−Hm,298◦ )/Tand
the value of∆H◦.The Gibbs Energy Change at Fixed Composition
Using the identity that a sum of logarithms is equal to the logarithm of a product, we
write Eq. (7.1-12) in the form(
∂G
∂ξ)
T,P∆G◦+RTln(Q) (7.1-16)whereQav 11 av 22 ···avcc∏ci 1avii (7.1-17)The notationΠdenotes a product of factors, just asΣdenotes a sum of terms. The
quantityQis called theactivity quotient. It is called a quotient because the factors for
reactants have negative exponents.