536 12 Chemical Reaction Mechanisms I: Rate Laws and Mechanisms
speed, the minimum relative speed that can lead to reaction:v>vc (12.3-8)This integration is carried out in Appendix D. The result isZ 12 (reactive)πd 122 N 1 N 2 (8kBT /πμ 12 )^1 /^2(
1 +
μv^2 c
2 kBT)
e−μ^12 v(^2) c/ 2 kBT
〈v 12 〉πd^212 N 1 N 2
(
1 +
μ 12 v^2 c
2 kBT)
e−μ^12 v(^2) c/ 2 kBT
(12.3-9)
where〈v 12 〉is the mean relative speed. Comparison of this equation with Eq. (12.1-4)
shows that we have an expression for the fraction of collisions that leads to reaction in
a bimolecular elementary process:
f
(
1 +
μ 12 v^2 c
2 kBT)
e−μ^12 v(^2) c/ 2 kBT
(12.3-10)
Thecritical energyis given by
εc
1
2
μ 12 v^2 c (12.3-11)so that Eq. (12.3-9) can be writtenZ 12 (reactive)〈v 12 〉πd 122 N 1 N 2(
1 +
εc
kBT)
e−εc/kBT (12.3-12)which corresponds torate−d[F 1 ]
dt−
dN 1
dtZ 12 (reactive)
NAv1
NAv〈v 12 〉πd 122(
1 +
εc
kBT)
e−εc/kBTN 1 N 2NAv〈v 12 〉πd 122(
1 +
εc
kBT)
e−εc/kBT[F 1 ][F 2 ] (12.3-13)where we have used the fact thatN 1 NAv[F 1 ] and N 2 NAv[F 2 ]The reaction is second order with a rate constant given bykNAvπd 122(
8 kBT
πμ 12) 1 / 2 (
1 +
Ec
RT)
e−Ec/RT (12.3-14)where we define amolar critical energyEcNAvεc (12.3-15)