Physical Chemistry Third Edition

(C. Jardin) #1

712 16 The Principles of Quantum Mechanics. II. The Postulates of Quantum Mechanics


The productσxσpxis a measure of the combined uncertainty ofxandpx, and is called
anuncertainty product. This kind of uncertainty product is involved in the Heisenberg
uncertainty principle. From Examples 16.16 and 16.21 the value of the uncertainty
product ofxandpxfor then1 state of the particle in a one-dimensional box is

σxσpx( 0. 180756 a) ̄


a

 0. 56786 h ̄ 0. 09038 h (16.5-1)

Table 16.1 gives some values ofσx,σpx, andσxσpxfor several states of a particle in a
one-dimensional box.
The coordinatexand the momentum componentpxare examples ofconjugate
variablesin the sense of Eq. (E-20) of Appendix E. The operators of this pair of variables
do not commute, as shown in Example 16.4. TheHeisenberg uncertainty principleis
a general statement of the combined uncertainties of two conjugate variables:The
product of the uncertainties of two conjugate variables is always equal to or larger
thanh/ 4 π, wherehis Planck’s constant.If we use the symbols∆xand∆pxfor
the uncertainties of a coordinate and its conjugate momentum, then the uncertainty
principle is

∆x∆pxε≥

h
4 π

 ̄

h
2

(uncertainty principle) (16.5-2)

The minimum value in Eq. (16.5-2) corresponds to the use of standard deviations as
measures of uncertainty:

∆xσx (16.5-3)

and

∆pxσpx (16.5-4)

Table 16.1 Values of the Uncertainty Product for a Particle
in a One-Dimensional Box
n σx σpx σxσpx

1 0.18076ah/2a 0.09038h0.56786h ̄
2 0.26583ah/a 0.26583h1.67029h ̄
3 0.27876a 3 h/2a 0.41813h2.62720h ̄
... ... ... ...
∞ 0.28868a ∞∞

Numerical Values for a Box of Length 10.0× 10 −^10 m
(Model for Pi Electrons in 1,3,5-Hexatriene)

nσx/m σpx/kg m s−^1 σxσpx/kg m^2 s−^1

11. 808 × 10 −^103. 313 × 10 −^255. 909 × 10 −^35
22. 626 × 10 −^106. 626 × 10 −^251. 761 × 10 −^34
32. 788 × 10 −^109. 939 × 10 −^252. 771 × 10 −^34
... ... ... ...
∞ 2. 887 × 10 −^10 ∞∞
Free download pdf