17.4 The Orbitals of the Hydrogen-Like Atom 743
Table 17.3 Real Hydrogen-Like Energy Eigenfunctions
ψ 10 ψ 1 s
1
√
π
(
Z
a
) 3 / 2
e−Zr/a
ψ 20 ψ 2 s
1
4
√
2 π
(
Z
a
) 3 / 2 (
2 −
Zr
a
)
e−Zr/^2 a
ψ 21 xψ 2 px
1
4
√
2 π
(
Z
a
) 3 / 2 (
Zr
a
)
e−Zr/^2 asin(θ) cos(φ)
ψ 21 yψ 2 py
1
4
√
2 π
(
Z
a
) 3 / 2 (
Zr
a
)
e−Zr/^2 asin(θ) sin(φ)
ψ 210 ψ 2 pz
1
4
√
2 π
(
Z
a
) 3 / 2 (
Zr
a
)
e−Zr/^2 acos(φ)
ψ 300 ψ 3 s
1
18
√
3 π
(
Z
a
) 3 / 2 [
6 −
4 Zr
a
+
(
2 Zr
3 a
) 2 ]
e−Zr/^3 a
ψ 310 ψ 3 pz
√
2
81
√
π
(
Z
a
) 3 / 2 (
6 Zr
a
−
Z^2 r^2
a^2
)
e−Zr/^3 acos(θ)
ψ 31 xψ 3 px
√
2
81
√
π
(
Z
a
) 3 / 2 (
6 Zr
a
−
Z^2 r^2
a^2
)
e−Zr/^3 asin(θ) cos(φ)
ψ 31 yψ 3 py
√
2
81
√
π
(
Z
a
) 3 / 2 (
6 Zr
a
−
Z^2 r^2
a^2
)
e−Zr/^3 asin(θ) sin(φ)
ψ 320 ψ 3 dz 2
1
81
√
6 π
(
Z
a
) 3 / 2 (
Zr
a
) 2
e−Zr/^3 a[3 cos^2 (θ)−1]
ψ 3 dxz
√
2
81
√
π
(
Z
a
) 3 / 2 (
Zr
a
) 2
e−Zr/^3 asin(θ)cos(θ)cos(φ)
ψ 3 dyz
√
2
81
√
π
(
Z
a
) 3 / 2 (
Zr
a
) 2
e−Zr/^3 asin(θ)cos(θ) sin(φ)
ψ 3 dx (^2) −y 2
1
81
√
2 π
(
Z
a
) 3 / 2 (
Zr
a
) 2
e−Zr/^3 asin^2 (θ)cos(2φ)
ψ 3 dxy
1
81
√
2 π
(
Z
a
) 3 / 2 (
Zr
a
) 2
e−Zr/^3 asin^2 (θ)sin(2φ)
The Qualitative Properties of the Hydrogen-Like Orbitals
It is important to have a grasp of the qualitative properties of the hydrogen-like orbitals
in three-dimensional space and to realize that they represent three-dimensional de
Broglie waves. The real orbitals that we have obtained correspond to standing waves,
with stationary nodes. We can visualize these waves by considering where they vanish.
A three-dimensional wave can vanish at a surface (anodal surface). Since each orbital
is a product of three factors, the orbital vanishes if any one of the factors vanishes.