Physical Chemistry Third Edition

(C. Jardin) #1

2.4 Calculation of Amounts of Heat and Energy Changes 69


EXAMPLE2.18

Show that for a reversible adiabatic process the van der Waals gas obeys

CVdT−
nRT
V−nb
dV (2.4-23)

Solution
Consider a system containing 1.000 mol of gas. Using Eq. (2.4-22) we can write for a closed
system

dU

(
∂U
∂T

)

V,n

dT+

(
∂U
∂V

)

T,n

dVCVdT+
a
Vm^2

dV

For a reversible process

dw−PdV−

(
RT
Vm−b

a
Vm^2

)
dV

For an adiabatic process

dUCVdT+
a
Vm^2

dVdw−

(
RT
Vm−b


a
Vm^2

)
dV

so that when terms are canceled

CVdT−
RT
Vm−b
dV

Exercise 2.15
Show that for a reversible adiabatic process in a van der Waals gas with constantCV,m,
(
T 2
T 1

)


(
V 1 −nb
V 2 −nb

)nR/CV
(2.4-24)

EXAMPLE2.19

Find the final temperature for the process of Example 2.17, using Eq. (2.4-24) instead of
Eq. (2.4-21), but still assuming thatCV 3 nR/2.
Solution
From Table A.3, the van der Waals parameterbis equal to 3. 219 × 10 −^5 m^3 mol−^1 for
argon.

T 2 (373.15 K)

(
5. 000 × 10 −^3 m^3 mol−^1 − 3. 22 × 10 −^5 m^3 mol−^1
20. 00 × 10 −^3 m^3 mol−^1 − 3. 22 × 10 −^5 m^3 mol−^1

) 2 / 3

 147 .6K

This value differs from the ideal value by 0.5 K.
Free download pdf