2.4 Calculation of Amounts of Heat and Energy Changes 69
EXAMPLE2.18
Show that for a reversible adiabatic process the van der Waals gas obeysCVdT−
nRT
V−nb
dV (2.4-23)Solution
Consider a system containing 1.000 mol of gas. Using Eq. (2.4-22) we can write for a closed
systemdU(
∂U
∂T)V,ndT+(
∂U
∂V)T,ndVCVdT+
a
Vm^2dVFor a reversible processdw−PdV−(
RT
Vm−b
−a
Vm^2)
dVFor an adiabatic processdUCVdT+
a
Vm^2dVdw−(
RT
Vm−b−
a
Vm^2)
dVso that when terms are canceledCVdT−
RT
Vm−b
dVExercise 2.15
Show that for a reversible adiabatic process in a van der Waals gas with constantCV,m,
(
T 2
T 1)
(
V 1 −nb
V 2 −nb)nR/CV
(2.4-24)EXAMPLE2.19
Find the final temperature for the process of Example 2.17, using Eq. (2.4-24) instead of
Eq. (2.4-21), but still assuming thatCV 3 nR/2.
Solution
From Table A.3, the van der Waals parameterbis equal to 3. 219 × 10 −^5 m^3 mol−^1 for
argon.T 2 (373.15 K)(
5. 000 × 10 −^3 m^3 mol−^1 − 3. 22 × 10 −^5 m^3 mol−^1
20. 00 × 10 −^3 m^3 mol−^1 − 3. 22 × 10 −^5 m^3 mol−^1) 2 / 3 147 .6KThis value differs from the ideal value by 0.5 K.