2.4 Calculation of Amounts of Heat and Energy Changes 69
EXAMPLE2.18
Show that for a reversible adiabatic process the van der Waals gas obeys
CVdT−
nRT
V−nb
dV (2.4-23)
Solution
Consider a system containing 1.000 mol of gas. Using Eq. (2.4-22) we can write for a closed
system
dU
(
∂U
∂T
)
V,n
dT+
(
∂U
∂V
)
T,n
dVCVdT+
a
Vm^2
dV
For a reversible process
dw−PdV−
(
RT
Vm−b
−
a
Vm^2
)
dV
For an adiabatic process
dUCVdT+
a
Vm^2
dVdw−
(
RT
Vm−b
−
a
Vm^2
)
dV
so that when terms are canceled
CVdT−
RT
Vm−b
dV
Exercise 2.15
Show that for a reversible adiabatic process in a van der Waals gas with constantCV,m,
(
T 2
T 1
)
(
V 1 −nb
V 2 −nb
)nR/CV
(2.4-24)
EXAMPLE2.19
Find the final temperature for the process of Example 2.17, using Eq. (2.4-24) instead of
Eq. (2.4-21), but still assuming thatCV 3 nR/2.
Solution
From Table A.3, the van der Waals parameterbis equal to 3. 219 × 10 −^5 m^3 mol−^1 for
argon.
T 2 (373.15 K)
(
5. 000 × 10 −^3 m^3 mol−^1 − 3. 22 × 10 −^5 m^3 mol−^1
20. 00 × 10 −^3 m^3 mol−^1 − 3. 22 × 10 −^5 m^3 mol−^1
) 2 / 3
147 .6K
This value differs from the ideal value by 0.5 K.