864 20 The Electronic States of Diatomic Molecules
andΨIcontains a single ionic term:
ΨIψ 1 sLi(1)α(1)ψ 1 sLi(2)β(2)ψ 1 sH(3)ψ 1 sH(4)[α(3)β(4)−β(3)α(4)] (20.4-19)
The coefficientscVBandcIcould be optimized by the variation method. If|cVB|is
larger than|cI|this corresponds to a bond that is primarily covalent and if|cVB|is
smaller than|cI|this corresponds to a bond that is primarily ionic.
EXAMPLE20.15
Calculate the values ofcVBandcIthat make the wave functionΨMVBequivalent to the
LCAOMO wave function for LiH in Eq. (20.4-5) if the orbitals of Eq. (20.4-8) are used. Find
the percent ionic character, defined as [c^2 I/(cVB^2 +c^2 I)]×100%.
Solution
The molecular orbitals of Eq. (18.4-8) are
ψ 1 σψ 1 sLi
ψ 2 σc 2 sp(1)Liψ 2 sp(1)Li+c 1 sHψ 1 sH≈− 0. 47 ψ 2 sp(1)Li− 0. 88 ψ 1 sH
The modified valence-bond function for LiH in Eqs. (13.4-15) and (13.4-16) is
ΨMVBcVBΨVB+cIΨI
where
ΨVBψ 1 sLi(1)α(1)ψ 1 sLi(2)β(2)[ψ 2 sp(1)Li(3)ψ 1 sH(4)+ψ 1 sH(3)ψ 2 sp(1)Li(4)]
×[α(3)β(4)−β(3)α(4)]
ΨIψ 1 sLi(1)α(1)ψ 1 sLi(2)β(2)ψ 1 sH(3)ψ 1 sH(4)[α(3)β(4)−β(3)α(4)]
The molecular-orbital wave function can be written, omitting the spin factors
ΨMOψ 1 sLi(1)ψ 1 sLi(2)[− 0. 47 ψ 2 sp1Li(3)− 0. 88 ψ 1 sH(3)]
×
[
− 0. 47 ψ 2 sp(1)Li(4)− 0. 88 ψ 1 sH(4)
]
ψ 1 sLi(1)ψ 1 sLi(2)
[
0. 22 ψ 2 sp(1)Li(3)ψ 2 sp(1)Li(4)+ 0. 41
[
ψ 2 sp(1)Li(3)ψ 1 sH(4)
+ψ 1 sH(3)ψ 2 sp(1)Li(4)
]
+ 0. 77 ψ 1 sH(3)ψ 1 sH(4)
]
Exact equivalence cannot be achieved, because the termψ 2 sp(1)Li(3)ψ 2 sp(1)Li(4) does not
appear inΨMVB. This term corresponds to ionic bonding with both electrons on the lithium
atom, and is best omitted. By comparison, we have
cVB 0. 41
cI 0. 77
% ionic
(0.77)^2
(0.77)^2 +(0.41)^2
(100%)78%