864 20 The Electronic States of Diatomic Molecules
andΨIcontains a single ionic term:ΨIψ 1 sLi(1)α(1)ψ 1 sLi(2)β(2)ψ 1 sH(3)ψ 1 sH(4)[α(3)β(4)−β(3)α(4)] (20.4-19)The coefficientscVBandcIcould be optimized by the variation method. If|cVB|is
larger than|cI|this corresponds to a bond that is primarily covalent and if|cVB|is
smaller than|cI|this corresponds to a bond that is primarily ionic.EXAMPLE20.15
Calculate the values ofcVBandcIthat make the wave functionΨMVBequivalent to the
LCAOMO wave function for LiH in Eq. (20.4-5) if the orbitals of Eq. (20.4-8) are used. Find
the percent ionic character, defined as [c^2 I/(cVB^2 +c^2 I)]×100%.
Solution
The molecular orbitals of Eq. (18.4-8) areψ 1 σψ 1 sLiψ 2 σc 2 sp(1)Liψ 2 sp(1)Li+c 1 sHψ 1 sH≈− 0. 47 ψ 2 sp(1)Li− 0. 88 ψ 1 sHThe modified valence-bond function for LiH in Eqs. (13.4-15) and (13.4-16) isΨMVBcVBΨVB+cIΨIwhereΨVBψ 1 sLi(1)α(1)ψ 1 sLi(2)β(2)[ψ 2 sp(1)Li(3)ψ 1 sH(4)+ψ 1 sH(3)ψ 2 sp(1)Li(4)]×[α(3)β(4)−β(3)α(4)]ΨIψ 1 sLi(1)α(1)ψ 1 sLi(2)β(2)ψ 1 sH(3)ψ 1 sH(4)[α(3)β(4)−β(3)α(4)]The molecular-orbital wave function can be written, omitting the spin factorsΨMOψ 1 sLi(1)ψ 1 sLi(2)[− 0. 47 ψ 2 sp1Li(3)− 0. 88 ψ 1 sH(3)]×[
− 0. 47 ψ 2 sp(1)Li(4)− 0. 88 ψ 1 sH(4)]ψ 1 sLi(1)ψ 1 sLi(2)[
0. 22 ψ 2 sp(1)Li(3)ψ 2 sp(1)Li(4)+ 0. 41[
ψ 2 sp(1)Li(3)ψ 1 sH(4)+ψ 1 sH(3)ψ 2 sp(1)Li(4)]
+ 0. 77 ψ 1 sH(3)ψ 1 sH(4)]Exact equivalence cannot be achieved, because the termψ 2 sp(1)Li(3)ψ 2 sp(1)Li(4) does not
appear inΨMVB. This term corresponds to ionic bonding with both electrons on the lithium
atom, and is best omitted. By comparison, we havecVB 0. 41cI 0. 77% ionic
(0.77)^2
(0.77)^2 +(0.41)^2(100%)78%