104 Surds, indices, and exponentials (Chapter 4)EXERCISE 4A.2
1 Simplify:
a 2p
2+3p
2 b 2p
2 ¡ 3p
2 c 5p
5 ¡ 3p
5 d 5p
5+3p
5
e 3p
5 ¡ 5p
5 f 7p
3+2p
3 g 9p
6 ¡ 12p
6 hp
2+p
2+p
22 Simplify:
ap
2(3¡p
2) bp
5(p
5+1) cp
10(3 + 2p
10) dp
7(3p
7 ¡4)
e ¡p
3(5 +p
3) f 2p
6(p
6 ¡7) g ¡p
8(p
8 ¡5) h ¡ 3p
2(4¡ 6p
2)3 Simplify:
a (5 +p
2)(4 +p
2) b (7 + 2p
3)(4 +p
3) c (9¡p
7)(4 + 2p
7)
d (p
3 + 1)(2¡ 3p
3) e (p
8 ¡6)(2p
8 ¡3) f (2p
5 ¡7)(1¡ 4p
5)Example 5 Self Tutor
Simplify:
a (5¡p
2)^2 b (7 + 2p
5)(7¡ 2p
5)a (5¡p
2)^2=25¡ 10p
2+2
=27¡ 10p
2b (7 + 2p
5)(7¡ 2p
5)
=7^2 ¡(2p
5)^2
=49¡(4£5)
=294 Simplify:
a (3 +p
2)^2 b (6¡p
3)^2 c (p
5+1)^2 d (p
8 ¡3)^2
e (4 + 2p
3)^2 f (3p
5+1)^2 g (7¡ 2p
10)^2 h (5p
6 ¡4)^25 Simplify:
a (3 +p
7)(3¡p
7) b (p
2 + 5)(p
2 ¡5) c (4¡p
3)(4 +p
3)
d (2p
2 + 1)(2p
2 ¡1) e (4 + 3p
8)(4¡ 3p
8) f (9p
3 ¡5)(9p
3+5)DIVISION BY SURDS
Numbers like
6
p
2and
9
5+p
2involve dividing by a surd.It is customary to ‘simplify’ these numbers by rewriting them without the surd in the denominator.For any fraction of the form
b
p
a
, we can remove the surd from the denominator by multiplying byp
a
p
a
.Sincep
a
p
a
=1, this does not change the value of the fraction.=5^2 + 2(5)(¡p
2) + (p
2)^2cyan magenta yellow black(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_04\104CamAdd_04.cdr Friday, 31 January 2014 11:18:18 AM BRIAN