134 Logarithms (Chapter 5)EXERCISE 5B
1 Write an equivalent exponential equation for:
a log 10 100 = 2 b log 10 10 000 = 4 c log 10 (0:1) =¡ 1
d log 10p
10 =^12 e log 2 8=3 f log 3 9=2g log 2 (^14 )=¡ 2 h log 3p
27 = 1: 5 i log 5³
p^1
5́
=¡^122 Write an equivalent logarithmic equation for:
a 22 =4 b 43 =64 c 52 =25
d 72 =49 e 26 =64 f 2 ¡^3 =^18
g 10 ¡^2 =0: 01 h 2 ¡^1 =^12 i 3 ¡^3 = 271Example 6 Self Tutor
Find:
a log 216 b log 50 : 2 c log 105p
100 d log 2³
p^1
2́a log 216
= log 224
=4b log 50 : 2
= log 5 (^15 )
= log 55 ¡^1
=¡ 1c log 105p
100= log 10¡
102¢^15= log 10102
5
=^25d log 2³
p^1
2́= log 22
¡^12=¡^123 Find:
a log 10 100 000 b log 10 (0:01) c log 3p
3 d log 28
e log 264 f log 2128 g log 525 h log 5125
i log 2 (0:125) j log 93 k log 416 l log 366
m log 3243 n log 23p
2 o logaan p log 82q logt³
1
t́
r log 66p
6 s log 41 t log 994 Use your calculator to find:
a log 10152 b log 1025 c log 1074 d log 100 : 8
5 Solve forx:
a log 2 x=3 b log 4 x=^12 c logx81 = 4 d log 2 (x¡6) = 36 Simplify:
a log 416 b log 24 c log 3¡ 1
3¢
d log 104p
1000e log 7³
p^1
7́
f log 5 (25p
5) g log 3³
p^1
27́
h log 4³
1
2
p
2́i logxx^2 j logxp
x k logmm^3 l logx(xp
x)m logn³
1
ń
n loga³
1
a^2́
o logaμ
1
p
a¶
p logmp
m^5cyan magenta yellow black(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_05\134CamAdd_05.cdr Tuesday, 21 January 2014 2:47:31 PM BRIAN