Cambridge Additional Mathematics

(singke) #1
140 Logarithms (Chapter 5)

SOLVING LOGARITHMIC EQUATIONS


Logarithmic equations can often be solved using the laws of logarithms. However, we must always check
that our solutions satisfy the original equation, remembering thatlgxis only defined for x> 0.

Example 12 Self Tutor


Solve forx:
a lg(x¡6) + lg 3 = 2 lg 6 b

a lg(x¡6) + lg 3 = 2 lg 6
) lg(x¡6) = lg 6^2 ¡lg 3
) lg(x¡6) = lg

¡ 36
3

¢

) x¡6=12
) x=18
Check: x¡ 6 > 0 ,sox> 6 X

b lgx+lg(x+ 5) = lg 14
) lg(x(x+ 5)) = lg 14
) x(x+5)=14
) x^2 +5x¡14 = 0
) (x+ 7)(x¡2) = 0
) x=¡ 7 or 2
But x> 0 and x+5> 0
) x=2is the only valid solution.

EXERCISE 5D.2


1 Solve forx:
a lg(x¡4) = lg 3 + lg 7 b lg(x+5)¡lg 8 = 2 lg 3
c lg(2x)=1+^12 lg 16 d log 2 x= 3 log 25 ¡ 6
e lgx¡lg(x¡4) = lg 5 f log 5 (x¡2)¡log 5 (x+ 2) = log 53
g log 3 x¡2 = log 3 (x¡1) h lg(x+2)¡1 = lg(x¡3)¡lg 12
2 Solve forx:
a lgx+lg(x+ 1) = lg 30 b log 5 (x+ 9) + log 5 (x+ 2) = log 5 (20x)
c log 7 x= log 78 ¡log 7 (6¡x) d log 6 (x+ 4) + log 6 (x¡1) = 1
e lgx+lg(2x+8)=1 f lg(x+ 2) + lg(x+ 7) = lg(2x+2)
g 2 log 2 x¡log 2 (8¡ 3 x)=1 h log 2 x+ log 2 (2x¡7) = 2

Example 13 Self Tutor


Solve forx: logx3 + logx12 = 2

logx3 + logx12 = 2
) logx(3£12) = logx(x^2 )
) 36 =x^2
) x=6 fsince x> 0 g

3 Solve forx:
a logx 32 ¡logx4=1 b logx45 = 2 + logx 5
c logx54 = 3¡logx 4 d 2 logx 2 ¡3 = logx

¡ 1
16

¢

lgx+lg(x+ 5) = lg 14

The base of a
logarithm must
be positive.

cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_05\140CamAdd_05.cdr Wednesday, 29 January 2014 9:15:03 AM BRIAN

Free download pdf