Cambridge Additional Mathematics

(singke) #1
y

1 x

1
(e 1),

(1 e),

y=x

y=ex

y=lnx

O

142 Logarithms (Chapter 5)

InChapter 4we came across thenatural exponential e¼ 2 :718 28.

Given the exponential function f(x)=ex, the inverse function f¡^1 = logex is the logarithm in basee.
We use lnx to represent logex, and calllnxthenatural logarithmofx.
y=lnx is the reflection of y=ex in the mirror line y=x.

Notice that: ² ln 1 = lne^0 =0
² lne=lne^1 =1
² lne^2 =2

² ln

p
e=lne

1

(^2) =^1
2
² ln
³ 1
e
́
=lne¡^1 =¡ 1
lnex=x and elnx=x.
Since ax=
¡
elna
¢x
=exlna, ax=exlna, a> 0.


EXERCISE 5E.1


1 Without using a calculator find:
a lne^2 b lne^3 c ln

p
e d ln 1

e ln

³ 1
e

́
f ln^3

p
e g ln

³ 1
e^2

́
h ln

μ
1
p
e


Check your answers using a calculator.

2 Simplify:
a eln 3 b e2ln3 c e¡ln 5 d e¡2ln2

3 Explain why ln(¡2) and ln 0 cannot be found.

4 Simplify:

a lnea b ln(e£ea) c ln

¡
ea£eb

¢
d ln(ea)b e ln

μ
ea
eb


Example 14 Self Tutor


Use your calculator to write the following in the formek wherekis correct to
4 decimal places:
a 50 b 0 : 005

a 50
=eln 50 fusing x=elnxg
¼e^3 :^9120

b 0 : 005
=eln 0:^005
¼e¡^5 :^2983

E Natural logarithms

cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_05\142CamAdd_05.cdr Friday, 20 December 2013 1:05:03 PM BRIAN

Free download pdf