Logarithms (Chapter 5) 153
2 Find:
a lg
p
10 b lg
1
p 310 c lg(10
a£ 10 b+1)
3 Simplify:
a 4 ln 2 + 2 ln 3 b^12 ln 9¡ln 2 c 2ln5¡ 1 d^14 ln 81
4 Find:
a ln(e
p
e) b ln
³ 1
e^3
́
c ln(e^2 x) d ln
³e
ex
́
5 Write as a single logarithm:
a lg 16 + 2 lg 3 b log 216 ¡2 log 23 c 2 + log 45
6 Write as logarithmic equations:
a P=3£ 7 x b m=
n^3
5
7 Solve forx:
a log 2 (x+5)¡log 2 (x¡2) = 3 b lgx+lg(x+ 15) = 2
8 Show that log 37 £2 log 7 x= 2 log 3 x.
9 Write the following equations without logarithms:
a lgT=2lgx¡lg 5 b log 2 K=x+ log 23
10 Write in the form alnk whereaandkare positive whole numbers andkis prime:
a ln 32 b ln 125 c ln 729
11 Copy and complete: Function y= log 2 x y=ln(x+5)
Domain
Range
12 If A= log 52 and B= log 53 , write in terms ofAandB:
a log 536 b log 554 c log 5 (8
p
3) d log 5 (20:25) e log 5 (0:8)
13 Solve forx:
a 3 ex¡5=¡ 2 e¡x b 2lnx¡3ln
³
1
x
́
=10
14 Solve forx, giving your answer to 2 decimal places:
a 7 x= 120 b 6 £ 23 x= 300
15 A population of seals is given by P=20£ 2
t
(^3) wheretis the time in years, t> 0.
Find the time required for the population to reach 100.
16 Consider f:x 7! 5 e¡x+1.
a State the range off.
b Find: i f¡^1 (x) ii f¡^1 (2)
c State the domain off¡^1.
d Solve f¡^1 (x)=0.
e Sketch the graphs off,f¡^1 , and y=x on the same set of axes.
4037 Cambridge
cyan magenta yellow black Additional Mathematics
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_05\153CamAdd_05.cdr Tuesday, 21 January 2014 2:50:19 PM BRIAN