Sets and Venn diagrams (Chapter 1) 19
Example 3 Self Tutor
FindC^0 given that:
a U=fall positive integersg and C=fall even integersg
b C=fx 2 Z:x> 2 g and U=Z
a C^0 =fall odd integersg b C^0 =fx 2 Z:x 61 g
Example 4 Self Tutor
Suppose U=fx 2 Z:¡ 56 x 65 g, A=fx 2 Z:1 6 x 64 g, and
B=fx 2 Z:¡ 36 x< 2 g. List the elements of:
a A b B c A^0 d B^0
e A\B f A[B g A^0 \B h A^0 [B^0
a A=f 1 , 2 , 3 , 4 g b B=f¡ 3 ,¡ 2 ,¡ 1 , 0 , 1 g
c A^0 =f¡ 5 ,¡ 4 ,¡ 3 ,¡ 2 ,¡ 1 , 0 , 5 g d B^0 =f¡ 5 ,¡ 4 , 2 , 3 , 4 , 5 g
e A\B=f 1 g f A[B=f¡ 3 ,¡ 2 ,¡ 1 , 0 , 1 , 2 , 3 , 4 g
g A^0 \B=f¡ 3 ,¡ 2 ,¡ 1 , 0 g h A^0 [B^0 =f¡ 5 ,¡ 4 ,¡ 3 ,¡ 2 ,¡ 1 , 0 , 2 , 3 , 4 , 5 g
EXERCISE 1D
1 Find the complement ofCgiven that:
a U=fletters of the English alphabetg and C=fvowelsg
b U=fintegersg and C=fnegative integersg
c U=Z and C=fx 2 Z:x 6 ¡ 5 g
d U=Q and C=fx 2 Q :x 62 [x> 8 g
2 Suppose U=fx 2 Z:0 6 x 68 g, A=fx 2 Z:2 6 x 67 g, and B=fx 2 Z:5 6 x 68 g.
List the elements of:
a A b A^0 c B d B^0
e A\B f A[B g A\B^0 h A^0 [B^0
3 SupposePandQ^0 are subsets ofU. n(U)=15, n(P)=6, and n(Q^0 )=4. Find:
a n(P^0 ) b n(Q)
4 True or false?
a If n(U)=a and n(A)=b where AμU, then n(A^0 )=b¡a.
b IfQis a subset ofUthen Q^0 =fx 2 U:x= 2 Qg.
5 Suppose U=fx 2 Z:0<x 612 g, A=fx 2 Z:2 6 x 67 g,
B=fx 2 Z:3 6 x 69 g, and C=fx 2 Z:5 6 x 611 g.
List the elements of:
a B^0 b C^0 c A^0 d A\B
e (A\B)^0 f A^0 \C g B^0 [C h (A[C)\B^0
4037 Cambridge
cyan magenta yellow black Additional Mathematics
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_01\019CamAdd_01.cdr Tuesday, 19 November 2013 11:54:52 AM GR8GREG