Cambridge Additional Mathematics

(singke) #1
196 Straight line graphs (Chapter 7)

Example 17 Self Tutor


x 1 2 3 4
y 14 10 10 11

This table shows experimental data values forxandy:
By plotting a suitable straight line graph, show thatyandxare related
by the equation y=ax+
b
x
.

If y=ax+b
x

, then

xy=ax^2 +b
) ifyandxare related in this way, then we should observe
a linear relationship betweenxyandx^2.

x^214916
xy 14 20 30 44

The graph ofxyagainstx^2 is linear.

Using points (1,14) and (4,20),
the gradient is
20 ¡ 14
4 ¡ 1
=2.

) the equation is xy¡14 = 2(x^2 ¡1)
) xy¡14 = 2x^2 ¡ 2
) xy=2x^2 +12

) y=2x+
12
x

fa=2, b=12g

6 This table shows experimental values ofxandy: x^1234
y 1 26 99 244

It is known thatxandyare related by the equation y=ax^3 +bx, whereaandbare constants.

a A straight line graph is to be drawn to represent this information. If
y
x
is plotted on the vertical
axis, which variable should be plotted on the horizontal axis?
b Draw the straight line graph.
c Find the values ofaandb.
d Findywhen x=5.

7 This table shows experimental values ofxandy: x^1234
y 4 1 : 17 0 : 36 0

By plotting a suitable straight line graph, show thatxandyare related by the equation y=
a
x
+
b
p
x
.

xy

x 2
O 24681012 14

10

20

30

40

50

16 18

(16 44),

(9 30),
(4 20),

(1 14),

There may be more than one
way to transform the variables.

cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_07\196CamAdd_07.cdr Friday, 4 April 2014 11:54:12 AM BRIAN

Free download pdf