The unit circle and radian measure (Chapter 8) 211
PERIODICITY OF TRIGONOMETRIC RATIOS
Since there are 2 ¼radians in a full revolution, if we add any integer multiple of 2 ¼toμ(in radians) then
the position of P on the unit circle is unchanged.
Forμin radians and k 2 Z,
cos (μ+2k¼) = cosμ and sin (μ+2k¼) = sinμ.
We notice that for any point (cosμ,sinμ) on the unit circle, the
point directly opposite is (¡cosμ,¡sinμ)
) cos(μ+¼)=¡cosμ
sin(μ+¼)=¡sinμ
and tan(μ+¼)=
¡sinμ
¡cosμ
=
sinμ
cosμ
= tanμ
Forμin radians andk 2 Z, tan(μ+k¼) = tanμ.
Thisperiodicfeature is an important property of the trigonometric functions.
EXERCISE 8C
1 For each unit circle illustrated:
i state the exact coordinates of points A, B, and C in terms of sine and cosine
ii use your calculator to give the coordinates of A, B, and C correct to 3 significant figures.
ab
2 With the aid of a unit circle, complete the following table:
μ(degrees) 0 ± 90 ± 180 ± 270 ± 360 ± 450 ±
μ(radians)
sine
cosine
tangent
y
1 x
1
μ
- 1
- 1
μ¼+
(a b),
(-a -b),
O
y
1 x
1
26 °
146 ° A
B
C
-1
-1 O
199 °
y
x
1
1
- 35 °
123 °
251 °
A
B
C
-1
-1 O
4037 Cambridge
cyan magenta yellow black Additional Mathematics
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_08\211CamAdd_08.cdr Monday, 23 December 2013 1:56:36 PM BRIAN