The unit circle and radian measure (Chapter 8) 215
5 Find exact values forsinxandcosxgiven that:
a tanx=^23 and 0 <x<¼ 2 b tanx=¡^43 and ¼ 2 <x<¼
c tanx=
p
5
3 and ¼<x<
3 ¼
2 d tanx=¡
12
5 and
3 ¼
2 <x<^2 ¼
6 Suppose tanμ=k wherekis a constant and ¼<μ<^32 ¼. Write expressions for sinμ and
cosμ in terms ofk.
FINDING ANGLES WITH PARTICULAR TRIGONOMETRIC RATIOS
FromExercise 8Cyou should have discovered that:
Forμin radians:
² sin(¼¡μ) = sinμ ² cos(¼¡μ)=¡cosμ ² cos(2¼¡μ) = cosμ
We need results such as these, and also the periodicity of the trigonometric ratios, to find angles which have
a particular sine, cosine, or tangent.
Example 10 Self Tutor
Find the two anglesμon the unit circle, with 06 μ 62 ¼, such that:
a cosμ=^13 b sinμ=^34 c tanμ=2
a cos¡^1 (^13 )¼ 1 : 23
) μ¼ 1 : 23 or 2 ¼¡ 1 : 23
) μ¼ 1 : 23 or 5 : 05
b sin¡^1 (^34 )¼ 0 : 848
) μ¼ 0 : 848 or ¼¡ 0 : 848
) μ¼ 0 : 848 or 2 : 29
c tan¡^1 (2)¼ 1 : 11
) μ¼ 1 : 11 or ¼+1: 11
) μ¼ 1 : 11 or 4 : 25
EXERCISE 8D.2
1 Find two anglesμon the unit circle, with 06 μ 62 ¼, such that:
a tanμ=4 b cosμ=0: 83 c sinμ=^35
d cosμ=0 e tanμ=1: 2 f cosμ=0: 7816
g sinμ= 111 h tanμ=20: 2 i sinμ=^3940
If , , or is positive,
your calculator will give
in the domain.
cos sin tan
0
μμ μ
μ
<μ<_wp
-1 1 x
1
y
-1
-1 1 x O
1
y
-1
Er
-1 1 x O
1 y
-1 Qe
O
4037 Cambridge
cyan magenta yellow black Additional Mathematics
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_08\215CamAdd_08.cdr Friday, 4 April 2014 11:59:54 AM BRIAN