Cambridge Additional Mathematics

(singke) #1
If or is negative,
your calculator will give
in the domain.

sin tan

0

μμ
μ
-___wp<μ<

PARAMETRIC
PLOTTER

The arrow
shows the angle that
your calculator gives.

green

-1 1 x

1 y

-1


  • We


2.30

-1 1 x O

1 y

-1

-0.4

-0.412
O
-1 1 x

1 y

-1

-0.322

O

216 The unit circle and radian measure (Chapter 8)

Example 11 Self Tutor


Find two anglesμon the unit circle, with 06 μ 62 ¼, such that:
a sinμ=¡ 0 : 4 b cosμ=¡^23 c tanμ=¡^13

a sin¡^1 (¡ 0 :4)¼¡ 0 : 412

But 06 μ 62 ¼
) μ¼¼+0: 412 or
2 ¼¡ 0 : 412
) μ¼ 3 : 55 or 5 : 87

b cos¡^1 (¡^23 )¼ 2 : 30

But 06 μ 62 ¼
) μ¼ 2 : 30 or
2 ¼¡ 2 : 30
) μ¼ 2 : 30 or 3 : 98

c tan¡^1 (¡^13 )¼¡ 0 : 322

But 06 μ 62 ¼
) μ¼¼¡ 0 : 322 or
2 ¼¡ 0 : 322
) μ¼ 2 : 82 or 5 : 96

2 Find two anglesμon the unit circle, with 06 μ 62 ¼, such that:
a cosμ=¡^14 b sinμ=0 c tanμ=¡ 3 : 1
d sinμ=¡ 0 : 421 e tanμ=¡ 6 : 67 f cosμ=¡ 172

g tanμ=¡

p
5 h cosμ=¡p^13 i sinμ=¡

p 2
p
5

Discovery 2 Parametric equations


#endboxedheading
Usually we write functions in the form y=f(x).
For example: y=3x+7, y=x^2 ¡ 6 x+8, y= sinx
However, sometimes it is useful to expressbothxandyin terms
of another variablet, called theparameter. In this case we say
we haveparametric equations.
What to do:

1aUse the graphing package to plot
f(x,y):x= cost, y= sint, 0 ± 6 t 6360 ±g.
Use the same scale on both axes.

The use of parametric
equations is not required
for the syllabus.

cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_08\216CamAdd_08.cdr Friday, 4 April 2014 12:57:02 PM BRIAN

Free download pdf