218 The unit circle and radian measure (Chapter 8)MULTIPLES OF¼ 6 OR 30 ±
Since OA=OP, triangle OAP is isosceles.
The remaining angles are therefore also 60 ±, and so
triangle AOP is equilateral.The altitude [PN] bisects base [OA], so ON=^12.If P is(^12 ,k), then (^12 )^2 +k^2 =1 fPythagorasg
) k^2 =^34
) k=p
3
2 fas k>^0 gSo, P is (^12 ,p
3
2 ) wherep
3
2 ¼^0 :^866.cos¼ 3 =^12 and sin¼ 3 =p
3
2Now NbPO=¼ 6 =30±.Hence cos¼ 6 =p
3
2 and sin¼
6 =1
2You should remember these values. If you forget, divide in two an
equilateral triangle with side length 2.Formultiples of¼ 6 , we have:Summary² Formultiples of¼ 2 , the coordinates of the points on the unit circle involve 0 and§ 1.² Forothermultiples of¼ 4 , the coordinates involve§p^12.² Forothermultiples of¼ 6 , the coordinates involve§^12 and§p
3
2.
² The signs of the coordinates are determined by which quadrant the angle is in.You should be able to use this summary to find the trigonometric ratios for angles which are multiples of
¼
6 and¼
4.30 °60 °1PO Qw N]30 °60 °221
2~` 3xyA,() 101NP,(_ k)Qw_Qw60 °1
kOxy
() 01 ,¡() 10 ,¡( -1) 0 ,(-1 ),¡ 0&Qw]_, *&],Qw*&],-Qw*&-w]Q,_- * &Qw]_-, *&-],-Qw*&-],Qw*&-Qw]_, *Wd_pUh_p
Ocyan magenta yellow black(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_08\218CamAdd_08.cdr Monday, 6 January 2014 9:40:28 AM BRIAN