Cambridge Additional Mathematics

(singke) #1
1

-1


  • 90 ° 90 ° 180 ° 270 ° 360 ° 540 °
    ¼ 2 ¼ 2 ¼ 32 ¼ 2 ¼ 3 ¼


450 °
2


  • ¼ -^5 ¼


-180°

Trigonometric functions (Chapter 9) 231

x

Click on the icon to generate the sine function for yourself.
You should observe that the sine function can be continued beyond 06 x 62 ¼
in either direction.

The unit circle repeats itself after one full revolution, so theperiodof y= sinx is 2 ¼.
Themaximumvalue is 1 and theminimumis¡ 1 ,as¡ 16 y 61 on the unit circle.
Theamplitudeof y= sinx is 1.

TRANSFORMATIONS OF THE SINE CURVE


In theDiscoveriesthat follow, we will consider different transformations of the sine curve y= sinx.We
will hence be able to generate the curve for the general sine function y=asinbx+c, a> 0 , b> 0.

Discovery 1 The family y=asinx, a> 0


Click on the icon to explore the family y=asinx, a> 0.
What to do:
1 Use the slider to vary the value ofa. Observe the changes to
the graph of the function.
2 Use the software to help complete the table:

a Function Maximum Minimum Period Amplitude
1 y= sinx 1 ¡ 1 2 ¼ 1
2 y= 2 sinx
3 y= 3 sinx
0 : 5 y=0:5 sinx
a y=asinx

3 How doesaaffect the function y=asinx?

Discovery 2 The family y= sinbx, b> 0


Click on the icon to explore the family y= sinbx, b> 0.
What to do:
1 Use the slider to vary the value ofb. Observe the changes to the graph of
the function.

DYNAMIC
SINE FUNCTION

DYNAMIC
SINE FUNCTION

xis measured in radians.

SINE FUNCTION

11

-1-1

yy

y=y=sinsinxx

OO

-180-180°°


  • -pp



      • 9090 °°
        -_-__wp_wp






9090 °° 180180 °° 270270 °° 360360 °°^540540 °°
xx

450450 °°
_pwpw_ p sEE_s__p_p 22 pp s_T_s_T_pp 33 pp

4037 Cambridge
cyan magenta yellow black Additional Mathematics

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_09\231CamAdd_09.cdr Monday, 14 April 2014 5:59:20 PM BRIAN

Free download pdf