Cambridge Additional Mathematics

(singke) #1
Sets and Venn diagrams (Chapter 1) 27

Venn diagrams allow us to easily visualise identities such as

n(A\B^0 )=n(A)¡n(A\B)
n(A^0 \B)=n(B)¡n(A\B)

Example 9 Self Tutor


Given n(U)=30, n(A)=14, n(B)=17, and n(A\B)=6, find:
a n(A[B) b n(A, but notB)

We see that b=6 fas n(A\B)=6g
a+b=14 fas n(A)=14g
b+c=17 fas n(B)=17g
a+b+c+d=30 fas n(U)=30g
) b=6, a=8, and c=11
) 8+6+11+d=30
) d=5
a n(A[B)=a+b+c=25 b n(A, but notB)=a=8

EXERCISE 1G


1 In the Venn diagram given,(2)means that there are 2 elements
in the set A\B.
How many elements are there in:
a B b A^0
c A[B d A, but notB
e B, but notA f neitherAnorB?

2 In the Venn diagram given,(a)means that there areaelements
in the shaded region.
Notice that n(A)=a+b. Find:
a n(B) b n(A^0 )
c n(A\B) d n(A[B)
e n((A\B)^0 ) f n((A[B)^0 )

3 The Venn diagram shows that n(P\Q)=a and n(P)=3a.
a Find:
i n(Q) ii n(P[Q) iii n(Q^0 ) iv n(U)
b Findaif:
i n(U)=29 ii n(U)=31
Comment on your results.

A B

U

(7) (2) (5)

(9)

AB

U

(b) (c)

(d)

(a)

PQ

U

(2a) (a) (a+4)

(a-5)

A B

U

(a) (b) (c)

(d)

A B

U

AB'\

4037 Cambridge
cyan magenta yellow black Additional Mathematics

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_01\027CamAdd_01.cdr Thursday, 9 January 2014 10:35:06 AM BRIAN

Free download pdf