¡n
2
¢
=n(n¡1)
2
for all integersn> 2.
(2)
(1)
276 Counting and the binomial expansion (Chapter 10)
Example 20 Self Tutor
Find the coefficient of x^5 in the expansion of (x+ 3)(2x¡1)^6.
(x+ 3)(2x¡1)^6
=(x+ 3)[(2x)^6 +
¡ 6
1
¢
(2x)^5 (¡1) +
¡ 6
2
¢
(2x)^4 (¡1)^2 +::::]
=(x+ 3)(2^6 x^6 ¡
¡ 6
1
¢
25 x^5 +
¡ 6
2
¢
24 x^4 ¡::::)
So, the terms containingx^5 are
¡ 6
2
¢
24 x^5 from (1)
and ¡ 3
¡ 6
1
¢
25 x^5 from (2)
) the coefficient ofx^5 is
¡ 6
2
¢
24 ¡ 3
¡ 6
1
¢
25 =¡ 336
12 Find the coefficient ofx^5 in the expansion of (x+ 2)(x^2 +1)^8.
13 Find the term containingx^6 in the expansion of (2¡x)(3x+1)^9.
14 Find the coefficient ofx^4 in the expansion of:
a (3¡ 2 x)^7 b (1 + 3x)(3¡ 2 x)^7
15 Find:
a the coefficient ofx^7 in the expansion of (x^2 ¡3)(2x¡5)^8
b the term independent ofxin the expansion of (1¡x^2 )
³
x+
2
x
́ 6
.
16 When the expansion of (a+bx)(1¡x)^6 is written in ascending powers ofx, the first three terms are
3 ¡ 20 x+cx^2. Find the values ofa,b, andc.
Example 21 Self Tutor
Consider the expansion of (1 + 3x)n, where n 2 Z+.
If the coefficient ofx^2 is 90 , find the value ofn.
(1 + 3x)n has general term Tr+1=
¡n
r
¢
1 n¡r(3x)r
=
¡n
r
¢
3 rxr
) T 3 =
¡n
2
¢
32 x^2 is thex^2 term.
Since the coefficient ofx^2 is 90 ,
¡n
2
¢
£9=90
)
n(n¡1)
2
=10
) n^2 ¡n=20
) n^2 ¡n¡20 = 0
) (n¡5)(n+4)=0
) n=5 fn> 0 g
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_10\276CamAdd_10.cdr Monday, 6 January 2014 12:03:39 PM BRIAN