Cambridge Additional Mathematics

(singke) #1
¡n
2

¢
=n(n¡1)
2
for all integersn> 2.

(2)
(1)

276 Counting and the binomial expansion (Chapter 10)

Example 20 Self Tutor


Find the coefficient of x^5 in the expansion of (x+ 3)(2x¡1)^6.

(x+ 3)(2x¡1)^6
=(x+ 3)[(2x)^6 +

¡ 6
1

¢
(2x)^5 (¡1) +

¡ 6
2

¢
(2x)^4 (¡1)^2 +::::]
=(x+ 3)(2^6 x^6 ¡

¡ 6
1

¢
25 x^5 +

¡ 6
2

¢
24 x^4 ¡::::)

So, the terms containingx^5 are

¡ 6
2

¢
24 x^5 from (1)
and ¡ 3

¡ 6
1

¢
25 x^5 from (2)

) the coefficient ofx^5 is

¡ 6
2

¢
24 ¡ 3

¡ 6
1

¢
25 =¡ 336

12 Find the coefficient ofx^5 in the expansion of (x+ 2)(x^2 +1)^8.

13 Find the term containingx^6 in the expansion of (2¡x)(3x+1)^9.

14 Find the coefficient ofx^4 in the expansion of:
a (3¡ 2 x)^7 b (1 + 3x)(3¡ 2 x)^7

15 Find:
a the coefficient ofx^7 in the expansion of (x^2 ¡3)(2x¡5)^8

b the term independent ofxin the expansion of (1¡x^2 )

³
x+
2
x

́ 6
.

16 When the expansion of (a+bx)(1¡x)^6 is written in ascending powers ofx, the first three terms are
3 ¡ 20 x+cx^2. Find the values ofa,b, andc.

Example 21 Self Tutor


Consider the expansion of (1 + 3x)n, where n 2 Z+.

If the coefficient ofx^2 is 90 , find the value ofn.

(1 + 3x)n has general term Tr+1=

¡n
r

¢
1 n¡r(3x)r
=

¡n
r

¢
3 rxr
) T 3 =

¡n
2

¢
32 x^2 is thex^2 term.

Since the coefficient ofx^2 is 90 ,

¡n
2

¢
£9=90

)
n(n¡1)
2

=10

) n^2 ¡n=20
) n^2 ¡n¡20 = 0
) (n¡5)(n+4)=0
) n=5 fn> 0 g

cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_10\276CamAdd_10.cdr Monday, 6 January 2014 12:03:39 PM BRIAN

Free download pdf