¡n
2¢
=n(n¡1)
2
for all integersn> 2.(2)
(1)276 Counting and the binomial expansion (Chapter 10)Example 20 Self Tutor
Find the coefficient of x^5 in the expansion of (x+ 3)(2x¡1)^6.(x+ 3)(2x¡1)^6
=(x+ 3)[(2x)^6 +¡ 6
1¢
(2x)^5 (¡1) +¡ 6
2¢
(2x)^4 (¡1)^2 +::::]
=(x+ 3)(2^6 x^6 ¡¡ 6
1¢
25 x^5 +¡ 6
2¢
24 x^4 ¡::::)So, the terms containingx^5 are¡ 6
2¢
24 x^5 from (1)
and ¡ 3¡ 6
1¢
25 x^5 from (2)) the coefficient ofx^5 is¡ 6
2¢
24 ¡ 3¡ 6
1¢
25 =¡ 33612 Find the coefficient ofx^5 in the expansion of (x+ 2)(x^2 +1)^8.13 Find the term containingx^6 in the expansion of (2¡x)(3x+1)^9.14 Find the coefficient ofx^4 in the expansion of:
a (3¡ 2 x)^7 b (1 + 3x)(3¡ 2 x)^715 Find:
a the coefficient ofx^7 in the expansion of (x^2 ¡3)(2x¡5)^8b the term independent ofxin the expansion of (1¡x^2 )³
x+
2
x́ 6
.16 When the expansion of (a+bx)(1¡x)^6 is written in ascending powers ofx, the first three terms are
3 ¡ 20 x+cx^2. Find the values ofa,b, andc.Example 21 Self Tutor
Consider the expansion of (1 + 3x)n, where n 2 Z+.If the coefficient ofx^2 is 90 , find the value ofn.(1 + 3x)n has general term Tr+1=¡n
r¢
1 n¡r(3x)r
=¡n
r¢
3 rxr
) T 3 =¡n
2¢
32 x^2 is thex^2 term.Since the coefficient ofx^2 is 90 ,¡n
2¢
£9=90)
n(n¡1)
2=10) n^2 ¡n=20
) n^2 ¡n¡20 = 0
) (n¡5)(n+4)=0
) n=5 fn> 0 gcyan magenta yellow black(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_10\276CamAdd_10.cdr Monday, 6 January 2014 12:03:39 PM BRIAN