Vectors (Chapter 11) 287SCALAR MULTIPLICATION
Ascalaris a non-vector quantity. It has a size but no direction.We can multiply vectors by scalars such as 2 and¡ 3 , or in fact any k 2 R.Ifais a vector, we define 2 a=a+a and 3 a=a+a+a
so ¡ 3 a=3(¡a)=(¡a)+(¡a)+(¡a).Ifais thenSo, 2 a is in the same direction asabut is twice as long asa
3 a is in the same direction asabut is three times longer thana
¡ 3 a has the opposite direction toaand is three times longer thana.Ifais a vector andkis a scalar, thenkais also a vector and we are
performingscalar multiplication.If k> 0 , kaandahave the same direction.
If k< 0 , kaandahave opposite directions.
If k=0, ka= 0 , the zero vector.Ifkis any scalar and v=μ
v 1
v 2¶
, then kv=μ
kv 1
kv 2¶
.Notice that:² (¡1)v=μ
(¡1)v 1
(¡1)v 2¶
=μ
¡v 1
¡v 2¶
=¡v ² (0)v=μ
(0)v 1
(0)v 2¶
=μ
0
0¶
= 0Example 6 Self Tutor
If p=μ
4
1¶
and q=μ
2
¡ 3¶
, find: a 3 q b p+2q c^12 p¡ 3 qa 3 q=3μ
2
¡ 3¶=μ
6
¡ 9¶b p+2q=μ
4
1¶
+2μ
2
¡ 3¶=μ
4 + 2(2)
1+2(¡3)¶=μ
8
¡ 5¶c^12 p¡ 3 q=^12μ
4
1¶
¡ 3μ
2
¡ 3¶=μ 1
2 (4)¡3(2)
1
2 (1)¡3(¡3)¶=μ
¡ 4(^912)
¶
VECTOR SCALAR
MULTIPLICATION
a
a
2 a a
a
a
3 a
- a
- a
- a
- a
-3aa4037 Cambridge
cyan magenta yellow black Additional Mathematics(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_11\287CamAdd_11.cdr Monday, 6 January 2014 9:55:37 AM BRIAN