Vectors (Chapter 11) 287
SCALAR MULTIPLICATION
Ascalaris a non-vector quantity. It has a size but no direction.
We can multiply vectors by scalars such as 2 and¡ 3 , or in fact any k 2 R.
Ifais a vector, we define 2 a=a+a and 3 a=a+a+a
so ¡ 3 a=3(¡a)=(¡a)+(¡a)+(¡a).
Ifais then
So, 2 a is in the same direction asabut is twice as long asa
3 a is in the same direction asabut is three times longer thana
¡ 3 a has the opposite direction toaand is three times longer thana.
Ifais a vector andkis a scalar, thenkais also a vector and we are
performingscalar multiplication.
If k> 0 , kaandahave the same direction.
If k< 0 , kaandahave opposite directions.
If k=0, ka= 0 , the zero vector.
Ifkis any scalar and v=
μ
v 1
v 2
¶
, then kv=
μ
kv 1
kv 2
¶
.
Notice that:
² (¡1)v=
μ
(¡1)v 1
(¡1)v 2
¶
=
μ
¡v 1
¡v 2
¶
=¡v ² (0)v=
μ
(0)v 1
(0)v 2
¶
=
μ
0
0
¶
= 0
Example 6 Self Tutor
If p=
μ
4
1
¶
and q=
μ
2
¡ 3
¶
, find: a 3 q b p+2q c^12 p¡ 3 q
a 3 q
=3
μ
2
¡ 3
¶
=
μ
6
¡ 9
¶
b p+2q
=
μ
4
1
¶
+2
μ
2
¡ 3
¶
=
μ
4 + 2(2)
1+2(¡3)
¶
=
μ
8
¡ 5
¶
c^12 p¡ 3 q
=^12
μ
4
1
¶
¡ 3
μ
2
¡ 3
¶
=
μ 1
2 (4)¡3(2)
1
2 (1)¡3(¡3)
¶
=
μ
¡ 4
(^912)
¶
VECTOR SCALAR
MULTIPLICATION
a
a
2 a a
a
a
3 a
- a
- a
- a
- a
-3a
a
4037 Cambridge
cyan magenta yellow black Additional Mathematics
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_11\287CamAdd_11.cdr Monday, 6 January 2014 9:55:37 AM BRIAN