Cambridge Additional Mathematics

(singke) #1
Vectors (Chapter 11) 287

SCALAR MULTIPLICATION


Ascalaris a non-vector quantity. It has a size but no direction.

We can multiply vectors by scalars such as 2 and¡ 3 , or in fact any k 2 R.

Ifais a vector, we define 2 a=a+a and 3 a=a+a+a
so ¡ 3 a=3(¡a)=(¡a)+(¡a)+(¡a).

Ifais then

So, 2 a is in the same direction asabut is twice as long asa
3 a is in the same direction asabut is three times longer thana
¡ 3 a has the opposite direction toaand is three times longer thana.

Ifais a vector andkis a scalar, thenkais also a vector and we are
performingscalar multiplication.

If k> 0 , kaandahave the same direction.
If k< 0 , kaandahave opposite directions.
If k=0, ka= 0 , the zero vector.

Ifkis any scalar and v=

μ
v 1
v 2


, then kv=

μ
kv 1
kv 2


.

Notice that:

² (¡1)v=

μ
(¡1)v 1
(¡1)v 2


=

μ
¡v 1
¡v 2


=¡v ² (0)v=

μ
(0)v 1
(0)v 2


=

μ
0
0


= 0

Example 6 Self Tutor


If p=

μ
4
1


and q=

μ
2
¡ 3


, find: a 3 q b p+2q c^12 p¡ 3 q

a 3 q

=3

μ
2
¡ 3


=

μ
6
¡ 9


b p+2q

=

μ
4
1


+2

μ
2
¡ 3


=

μ
4 + 2(2)
1+2(¡3)


=

μ
8
¡ 5


c^12 p¡ 3 q

=^12

μ
4
1


¡ 3

μ
2
¡ 3


=

μ 1
2 (4)¡3(2)
1
2 (1)¡3(¡3)


=

μ
¡ 4

(^912)

VECTOR SCALAR
MULTIPLICATION
a
a
2 a a
a
a
3 a



  • a

    • a

      • a






-3a

a

4037 Cambridge
cyan magenta yellow black Additional Mathematics

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_11\287CamAdd_11.cdr Monday, 6 January 2014 9:55:37 AM BRIAN

Free download pdf