288 Vectors (Chapter 11)Example 7 Self Tutor
If p=3i¡ 5 j and q=¡i¡ 2 j, find jp¡ 2 qj.p¡ 2 q=3i¡ 5 j¡2(¡i¡ 2 j)
=3i¡ 5 j+2i+4j
=5i¡j
) jp¡ 2 qj=p
52 +(¡1)^2
=p
26 unitsEXERCISE 11C
1 If a=μ
¡ 3
2¶
, b=μ
1
4¶
, and c=μ
¡ 2
¡ 5¶
find:a a+b b b+a c b+c d c+b
e a+c f c+a g a+a h b+a+c2 Given p=μ
¡ 4
2¶
, q=μ
¡ 1
¡ 5¶
, and r=μ
3
¡ 2¶
find:a p¡q b q¡r c p+q¡r
d p¡q¡r e q¡r¡p f r+q¡p3 Consider a=μ
a 1
a 2¶
.a Use vector addition to show that a+ 0 =a.
b Use vector subtraction to show that a¡a= 0.4 For p=μ
1
5¶
, q=μ
¡ 2
4¶
, and r=μ
¡ 3
¡ 1¶
find:a ¡ 3 p b^12 q c 2 p+q d p¡ 2 q
e p¡^12 r f 2 p+3r g 2 q¡ 3 r h 2 p¡q+^13 r5 Consider p=μ
1
1¶
and q=μ
2
¡ 1¶. Find geometrically and then comment on the results:
a p+p+q+q+q b p+q+p+q+q c q+p+q+p+q6 For r=μ
2
3¶
and s=μ
¡ 1
4¶
find:a jrj b jsj c jr+sj d jr¡sj e js¡ 2 rj7 If p=μ
1
3¶
and q=μ
¡ 2
4¶
find:a jpj b j 2 pj c j¡ 2 pj d j 3 pj e j¡ 3 pj
f jqj g j 4 qj h j¡ 4 qj ī
̄^1
2 q̄
̄ j
̄
̄¡^1
2 q̄
̄VECTOR RACE
GAMEcyan magenta yellow black(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_11\288CamAdd_11.cdr Monday, 6 January 2014 9:55:44 AM BRIAN