Cambridge Additional Mathematics

(singke) #1
288 Vectors (Chapter 11)

Example 7 Self Tutor


If p=3i¡ 5 j and q=¡i¡ 2 j, find jp¡ 2 qj.

p¡ 2 q=3i¡ 5 j¡2(¡i¡ 2 j)
=3i¡ 5 j+2i+4j
=5i¡j
) jp¡ 2 qj=

p
52 +(¡1)^2
=

p
26 units

EXERCISE 11C


1 If a=

μ
¡ 3
2


, b=

μ
1
4


, and c=

μ
¡ 2
¡ 5


find:

a a+b b b+a c b+c d c+b
e a+c f c+a g a+a h b+a+c

2 Given p=

μ
¡ 4
2


, q=

μ
¡ 1
¡ 5


, and r=

μ
3
¡ 2


find:

a p¡q b q¡r c p+q¡r
d p¡q¡r e q¡r¡p f r+q¡p

3 Consider a=

μ
a 1
a 2


.

a Use vector addition to show that a+ 0 =a.
b Use vector subtraction to show that a¡a= 0.

4 For p=

μ
1
5


, q=

μ
¡ 2
4


, and r=

μ
¡ 3
¡ 1


find:

a ¡ 3 p b^12 q c 2 p+q d p¡ 2 q
e p¡^12 r f 2 p+3r g 2 q¡ 3 r h 2 p¡q+^13 r

5 Consider p=

μ
1
1


and q=

μ
2
¡ 1


. Find geometrically and then comment on the results:


a p+p+q+q+q b p+q+p+q+q c q+p+q+p+q

6 For r=

μ
2
3


and s=

μ
¡ 1
4


find:

a jrj b jsj c jr+sj d jr¡sj e js¡ 2 rj

7 If p=

μ
1
3


and q=

μ
¡ 2
4


find:

a jpj b j 2 pj c j¡ 2 pj d j 3 pj e j¡ 3 pj
f jqj g j 4 qj h j¡ 4 qj i

̄
̄^1
2 q

̄
̄ j
̄
̄¡^1
2 q

̄
̄

VECTOR RACE
GAME

cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_11\288CamAdd_11.cdr Monday, 6 January 2014 9:55:44 AM BRIAN

Free download pdf