290 Vectors (Chapter 11)Example 8 Self Tutor
Given points A(¡ 1 ,2),B(3,4), and C(4,¡5), find the position vector of:
a B from O b B from A c A from Ca The position vector of B relative to O is¡!
OB=μ
3 ¡ 0
4 ¡ 0¶
=μ
3
4¶
.b The position vector of B relative to A is¡!
AB=μ
3 ¡¡ 1
4 ¡ 2¶
=μ
4
2¶
.c The position vector of A relative to C is¡!
CA=μ
¡ 1 ¡ 4
2 ¡¡ 5¶
=μ
¡ 5
7¶
.Example 9 Self Tutor
[AB] is the diameter of a circle with centre
C(¡ 1 ,2).IfBis(3,1), find:a¡!
BC b the coordinates of A.a¡!
BC=μ
¡ 1 ¡ 3
2 ¡ 1¶
=μ
¡ 4
1¶b If A has coordinates (a,b), then¡!
CA=μ
a¡(¡1)
b¡ 2¶
=μ
a+1
b¡ 2¶But¡!
CA=¡!
BC, soμ
a+1
b¡ 2¶
=μ
¡ 4
1¶) a+1=¡ 4 and b¡2=1
) a=¡ 5 and b=3
) Ais(¡ 5 ,3).EXERCISE 11D
1 Find¡!
AB given:
a A(2,3) and B(4,7) b A(3,¡1) and B(1,4) c A(¡ 2 ,7) and B(1,4)
d B(3,0) and A(2,5) e B(6,¡1) and A(0,4) f B(0,0) and A(¡ 1 ,¡3)2 Consider the point A(1,4). Find the coordinates of:a B given¡!
AB=μ
3
¡ 2¶
b C given¡!
CA=μ
¡ 1
2¶
.C,(-1 2)B,(3 1)Acyan magenta yellow black(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_11\290CamAdd_11.cdr Monday, 6 January 2014 1:03:48 PM BRIAN